kvcache-ai-ktransformers/ktransformers/local_chat_npu.py
2025-07-22 10:58:25 +00:00

257 lines
No EOL
11 KiB
Python

"""
Description :
Author : Boxin Zhang, Azure-Tang
Version : 0.1.0
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
"""
import os
import platform
import sys
project_dir = os.path.dirname(os.path.dirname(__file__))
sys.path.insert(0, project_dir)
import torch
import torch_npu
from torch_npu.contrib import transfer_to_npu
import torch.distributed as dist
import logging
from transformers import (
AutoTokenizer,
AutoConfig,
AutoModelForCausalLM,
GenerationConfig,
TextStreamer,
)
import json
import fire
from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.modeling_deepseek import DeepseekV2ForCausalLM
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeForCausalLM
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3ForCausalLM
from ktransformers.models.modeling_llama import LlamaForCausalLM
from ktransformers.models.modeling_mixtral import MixtralForCausalLM
from ktransformers.util.utils import prefill_and_generate, get_compute_capability
from ktransformers.util.ascend.ascend_utils import get_absort_weight, setup_model_parallel, get_tensor_parallel_group
from ktransformers.util import utils
from ktransformers.models.custom_cache import StaticCache
from ktransformers.server.config.config import Config
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled
from ktransformers.util.vendors import device_manager, get_device, to_device, GPUVendor
custom_models = {
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
"DeepseekV3ForCausalLM": DeepseekV3ForCausalLM,
"Qwen2MoeForCausalLM": Qwen2MoeForCausalLM,
"LlamaForCausalLM": LlamaForCausalLM,
"MixtralForCausalLM": MixtralForCausalLM,
}
torch.npu.config.allow_internal_format = True
ktransformer_rules_dir = (
os.path.dirname(os.path.abspath(__file__)) + "/optimize/optimize_rules/"
)
default_optimize_rules = {
"DeepseekV3ForCausalLM": ktransformer_rules_dir + "npu/DeepSeek-V3-Chat.yaml",
}
torch.npu.set_compile_mode(jit_compile=False)
import sys, signal, faulthandler
faulthandler.register(signal.SIGUSR1, file=sys.stderr, all_threads=True, chain=False)
def local_chat(
model_path: str | None = None,
optimize_config_path: str = None,
gguf_path: str | None = None,
max_new_tokens: int = 1000,
cpu_infer: int = Config().cpu_infer,
use_cuda_graph: bool = False,
prompt_file : str | None = None,
mode: str = "normal",
force_think: bool = False,
chunk_size: int = utils._MAX_CHUNK_SIZE,
q4_gguf_path: str | None = None,
tp: int = 1,
):
utils.USE_NPU_GRAPH = use_cuda_graph
torch.npu.config.allow_internal_format = False
torch.set_grad_enabled(False)
Config().cpu_infer = cpu_infer
local_rank, world_size = setup_model_parallel(tp=tp)
if utils.CUR_DEVICE is None:
utils.CUR_DEVICE = f"npu:{torch.npu.current_device()}"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if use_cuda_graph:
from ktransformers.util import npu_graph_runner
npu_graph_runner.LAYER_ID = config.num_hidden_layers
if mode == 'long_context':
assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode"
torch.set_default_dtype(torch.float16)
else:
torch.set_default_dtype(config.torch_dtype)
with torch.device("meta"):
if config.architectures[0] in custom_models:
print("using custom modeling_xxx.py.")
if (
"Qwen2Moe" in config.architectures[0]
): # Qwen2Moe must use flash_attention_2 to avoid overflow.
config._attn_implementation = "flash_attention_2"
if "Llama" in config.architectures[0]:
config._attn_implementation = "eager"
if "Mixtral" in config.architectures[0]:
config._attn_implementation = "flash_attention_2"
model = custom_models[config.architectures[0]](config)
else:
model = AutoModelForCausalLM.from_config(
config, trust_remote_code=True, attn_implementation="flash_attention_2"
)
if optimize_config_path is None:
if config.architectures[0] in default_optimize_rules:
print("using default_optimize_rule for", config.architectures[0]) if local_rank == 0 else None
optimize_config_path = default_optimize_rules[config.architectures[0]]
print(f'{optimize_config_path=}') if local_rank == 0 else None
else:
optimize_config_path = input(
"please input the path of your rule file(yaml file containing optimize rules):"
)
if gguf_path is None:
gguf_path = input(
"please input the path of your gguf file(gguf file in the dir containing input gguf file must all belong to current model):"
)
optimize_and_load_gguf(model, optimize_config_path, gguf_path, config, q4_gguf_path=q4_gguf_path)
get_absort_weight(model, config)
try:
model.generation_config = GenerationConfig.from_pretrained(model_path)
except Exception as e:
print(f"generation config can't auto create, make default. Message: {e}")
gen_config = GenerationConfig(
temperature=0.6,
top_p=0.95,
do_sample=True
)
model.generation_config = gen_config
# model.generation_config = GenerationConfig.from_pretrained(model_path)
if model.generation_config.pad_token_id is None:
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.eval()
logging.basicConfig(level=logging.INFO)
system = platform.system()
if system == "Windows":
os.system("cls") if local_rank == 0 else None
else:
os.system("clear") if local_rank == 0 else None
print(f"{model=}") if local_rank == 0 else None
batch_size, seq_length = 1, 1024
device_map = model.gguf_loader.tensor_device_map
static_cache = StaticCache(
config = model.config, max_batch_size = batch_size, max_cache_len = seq_length + max_new_tokens, device = device_map,
dtype = model.dtype
)
chunk_size = int(chunk_size)
new_chunk_size = min(max(chunk_size, 512), utils._MAX_CHUNK_SIZE)
if new_chunk_size != chunk_size:
chunk_size = new_chunk_size
print(f'[WARN] Chunk size reset to legal value between [512, {utils._MAX_CHUNK_SIZE}] which is {chunk_size}.')
torch.distributed.barrier()
while True:
if local_rank == 0:
try:
content = input("Chat: ").strip()
except KeyboardInterrupt:
dist.barrier()
print('Exit all ranks with KeyboardInterrupt!')
sys.exit(0)
if content.startswith('"""'): # prefix """
# multi lines input
content = content[3:] + "\n"
while True:
line = input("")
if line.endswith('"""'):
# end multi lines input
line = line[:-3] # suffix """
if line:
content += line + "\n"
break
else:
content += line + "\n"
if content == "":
if prompt_file != None:
content = open(prompt_file, "r").read()
else:
continue
elif os.path.isfile(content):
f = open(content, "r")
content = f.readlines()
f.close()
else:
content = [f"{len(content)},{max_new_tokens},{content}"]
else:
content = [""]
for line in content:
content_tensor = torch.tensor(bytearray(line.encode()), dtype=torch.uint8).to(device=utils.CUR_DEVICE)
if world_size > 1:
content_size = torch.tensor(len(content_tensor), dtype=torch.int64).to(device=utils.CUR_DEVICE)
all_content_sizes = [torch.zeros((1,), dtype=torch.int64).to(device=utils.CUR_DEVICE) for _ in range(world_size)]
dist.barrier()
dist.all_gather(all_content_sizes, content_size)
max_content_size = max([size.item() for size in all_content_sizes])
padded_content_tensor = torch.zeros((max_content_size,), dtype=torch.uint8).to(device=utils.CUR_DEVICE)
padded_content_tensor[:len(content_tensor)] = content_tensor
all_content_tensors = [torch.zeros((max_content_size,), dtype=torch.uint8).to(device=utils.CUR_DEVICE) for _ in range(world_size)]
dist.barrier()
dist.all_gather(all_content_tensors, padded_content_tensor)
content_tensor = all_content_tensors[0][:all_content_sizes[0].item()]
line = bytes(content_tensor.cpu().numpy()).decode()
parts = line.split(",")
input_tokens = int(parts[0])
max_new_tokens = int(parts[1])
line = line[line.index(",", line.index(",") + 1) + 1:]
messages = [{"role": "user", "content": line}]
input_tensor = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
if force_think:
token_thinks = torch.tensor([tokenizer.encode("<think>\\n",add_special_tokens=False)],device=input_tensor.device)
input_tensor = torch.cat(
[input_tensor, token_thinks], dim=1
)
if mode == 'long_context':
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
if system != "Windows" and (config.architectures[0] == "DeepseekV2ForCausalLM" or config.architectures[0] == "DeepseekV3ForCausalLM") and flashinfer_enabled and get_compute_capability() >= 8 and device_manager.gpu_vendor == GPUVendor.NVIDIA:
generated = prefill_and_generate(
model, tokenizer, input_tensor.cuda(), max_new_tokens, use_cuda_graph, mode = mode, force_think = force_think, chunk_size = chunk_size,
use_flashinfer_mla = True, num_heads = config.num_attention_heads, head_dim_ckv = config.kv_lora_rank, head_dim_kpe = config.qk_rope_head_dim, q_head_dim = config.qk_rope_head_dim + config.qk_nope_head_dim,
static_cache=static_cache
)
else:
generated = prefill_and_generate(
model, tokenizer, input_tensor.to(device=utils.CUR_DEVICE), max_new_tokens, use_cuda_graph, mode = mode, force_think = force_think, chunk_size = chunk_size,
static_cache=static_cache
)
if __name__ == "__main__":
fire.Fire(local_chat)