kvcache-ai-ktransformers/ktransformers/server/api/openai/legacy/completions.py
2025-04-25 04:20:12 +00:00

81 lines
3.2 KiB
Python

import json
from time import time
from uuid import uuid4
from fastapi import APIRouter
from fastapi.requests import Request
from ktransformers.server.utils.create_interface import get_interface
from ktransformers.server.schemas.assistants.streaming import stream_response
from ktransformers.server.schemas.legacy.completions import CompletionCreate,CompletionObject
from ktransformers.server.schemas.endpoints.chat import RawUsage
from fastapi.responses import JSONResponse
from ktransformers.server.config.config import Config
router = APIRouter()
@router.post("/completions",tags=['openai'])
async def create_completion(request:Request, create:CompletionCreate):
id = str(uuid4())
if create.max_tokens is not None and create.max_tokens<0:
return JSONResponse(
status_code=400,
content={
"object": "error",
"message": f"max_tokens must be at least 0, got {create.max_tokens}.",
"type": "BadRequestError",
"param": None,
"code": 400
})
if create.max_completion_tokens is not None and create.max_completion_tokens<0:
return JSONResponse(
status_code=400,
content={
"object": "error",
"message": f"max_completion_tokens must be at least 0, got {create.max_completion_tokens}.",
"type": "BadRequestError",
"param": None,
"code": 400
})
if create.temperature<0 or create.temperature>2:
return JSONResponse(
status_code=400,
content={
"object": "error",
"message": f"temperature must be in [0, 2], got {create.temperature}.",
"type": "BadRequestError",
"param": None,
"code": 400
})
if create.top_p<=0 or create.top_p>1:
return JSONResponse(
status_code=400,
content={
"object": "error",
"message": f"top_p must be in (0, 1], got {create.top_p}.",
"type": "BadRequestError",
"param": None,
"code": 400
})
interface = get_interface()
print(f'COMPLETION INPUT:----\n{create.prompt}\n----')
if create.stream:
async def inner():
async for res in interface.inference(create.prompt, id, create.temperature, create.top_p, create.max_tokens, create.max_completion_tokens):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
d = {'choices':[{'delta':{'content':token}}]}
yield f"data:{json.dumps(d)}\n\n"
d = {'choices':[{'delta':{'content':''},'finish_reason':''}]}
yield f"data:{json.dumps(d)}\n\n"
return stream_response(request,inner())
else:
comp = CompletionObject(id=id,object='text_completion',created=int(time()))
async for res in interface.inference(create.prompt,id,create.temperature,create.top_p, create.max_tokens, create.max_completion_tokens):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
comp.append_token(token)
return comp