mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
337 lines
13 KiB
Python
337 lines
13 KiB
Python
from typing import Any, List, Optional, Set
|
|
from transformers import LlamaTokenizer,AutoTokenizer, AutoConfig, LlamaForCausalLM,GenerationConfig, StaticCache, AutoModelForCausalLM,BitsAndBytesConfig
|
|
|
|
from ktransformers.server.schemas.base import ObjectID
|
|
from ktransformers.server.utils.multi_timer import Profiler
|
|
import torch
|
|
import sys, os
|
|
from ..base import ThreadContext,BackendInterfaceBase
|
|
from ktransformers.server.config.log import logger
|
|
from ..args import ConfigArgs,default_args
|
|
|
|
|
|
|
|
# This TextStreamer is a modified version from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/streamers.py
|
|
class TextStreamer:
|
|
|
|
def __init__(self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, **decode_kwargs):
|
|
self.tokenizer = tokenizer
|
|
self.skip_prompt = skip_prompt
|
|
self.decode_kwargs = decode_kwargs
|
|
|
|
# variables used in the streaming process
|
|
self.token_cache = []
|
|
self.print_len = 0
|
|
self.next_tokens_are_prompt = True
|
|
|
|
def reset(self):
|
|
self.token_cache = []
|
|
self.print_len = 0
|
|
|
|
def put(self, value)->Optional[str]:
|
|
"""
|
|
Receives tokens, decodes them, and prints them to stdout as soon as they form entire words.
|
|
"""
|
|
if not isinstance(value,int):
|
|
raise ValueError("TextStreamer only supports batch size 1, and int type input")
|
|
|
|
|
|
if self.skip_prompt and self.next_tokens_are_prompt:
|
|
self.next_tokens_are_prompt = False
|
|
return None
|
|
|
|
# Add the new token to the cache and decodes the entire thing.
|
|
self.token_cache.append(value)
|
|
text = self.tokenizer.decode(self.token_cache, skip_special_tokens=True,**self.decode_kwargs)
|
|
|
|
# After the symbol for a new line, we flush the cache.
|
|
if text.endswith("\n"):
|
|
printable_text = text[self.print_len :]
|
|
self.reset()
|
|
# If the last token is a CJK character, we print the characters.
|
|
elif len(text) > 0 and self._is_chinese_char(ord(text[-1])):
|
|
printable_text = text[self.print_len :]
|
|
self.print_len += len(printable_text)
|
|
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
|
|
# which may change with the subsequent token -- there are probably smarter ways to do this!)
|
|
else:
|
|
printable_text = text[self.print_len : text.rfind(" ") + 1]
|
|
self.print_len += len(printable_text)
|
|
return printable_text
|
|
|
|
def end(self)->Optional[str]:
|
|
"""Flushes any remaining cache and prints a newline to stdout."""
|
|
# Flush the cache, if it exists
|
|
if len(self.token_cache) > 0:
|
|
text = self.tokenizer.decode(self.token_cache, skip_special_tokens=True, **self.decode_kwargs)
|
|
printable_text = text[self.print_len :]
|
|
self.reset()
|
|
else:
|
|
printable_text = ""
|
|
|
|
self.next_tokens_are_prompt = True
|
|
return printable_text
|
|
|
|
def _is_chinese_char(self, cp):
|
|
"""Checks whether CP is the codepoint of a CJK character."""
|
|
# This defines a "chinese character" as anything in the CJK Unicode block:
|
|
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
|
#
|
|
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
|
# despite its name. The modern Korean Hangul alphabet is a different block,
|
|
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
|
# space-separated words, so they are not treated specially and handled
|
|
# like the all of the other languages.
|
|
if (
|
|
(cp >= 0x4E00 and cp <= 0x9FFF)
|
|
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
|
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
|
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
|
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
|
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
|
or (cp >= 0xF900 and cp <= 0xFAFF)
|
|
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
|
): #
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
class TransformersThreadContext(ThreadContext):
|
|
def get_local_messages(self):
|
|
local_messages = []
|
|
for m in self.messages:
|
|
local_messages.append(
|
|
{'role':m.role.value,
|
|
'content':m.get_text_content()}
|
|
)
|
|
|
|
return local_messages
|
|
|
|
|
|
class TransformersInterface(BackendInterfaceBase):
|
|
use_static_cache : bool = True
|
|
|
|
|
|
model: Any
|
|
tokenizer: AutoTokenizer
|
|
|
|
cache: StaticCache
|
|
generated_ids:torch.Tensor
|
|
seq_length:int
|
|
|
|
streamer: TextStreamer
|
|
|
|
# thread_related
|
|
last_request_id: Optional[str] = None
|
|
ever_generated_ids: Set[int] = set()
|
|
|
|
|
|
|
|
def __init__(self, args:ConfigArgs = default_args):
|
|
self.args = args
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(args.model_dir)
|
|
self.model = AutoModelForCausalLM.from_pretrained(args.model_dir, device_map=args.device,use_safetensors=True)
|
|
logger.info(f'{args.model_name} loaded from {args.model_dir} to {args.device}')
|
|
|
|
self.cache = StaticCache(config=self.model.config, max_batch_size=args.batch_size, max_cache_len=args.cache_lens, device=args.device, dtype=self.model.dtype)
|
|
logger.info(f'StaticCache (length={args.cache_lens}) created at {args.device}, batch size:{args.batch_size}')
|
|
|
|
self.streamer = TextStreamer(self.tokenizer)
|
|
|
|
|
|
|
|
@property
|
|
def current_ids(self):
|
|
return self.generated_ids[:,self.seq_length-1].unsqueeze(1)
|
|
|
|
@property
|
|
def active_cache_position(self):
|
|
return torch.tensor([self.seq_length-1], device=self.args.device)
|
|
|
|
|
|
def tokenize_prompt(self,prompt:str):
|
|
input_ids = self.tokenizer.encode(prompt,return_tensors='pt').to(self.args.device)
|
|
return input_ids
|
|
|
|
def format_and_tokenize_input_ids(self,thread_id:ObjectID,messages:List):
|
|
for m in messages:
|
|
if m['role']=='system':
|
|
logger.warn(f'change {m["role"]} to user')
|
|
m['role'] = 'user'
|
|
|
|
new_messages = [messages[0]]
|
|
for m in messages[1:]:
|
|
if m['role'] == 'user' and new_messages[-1]['role']=='user':
|
|
logger.warn('merge two adjacent user messages')
|
|
new_messages[-1]['content']+=m['content']
|
|
else:
|
|
new_messages.append(m)
|
|
|
|
|
|
input_ids = self.tokenizer.apply_chat_template(new_messages,return_tensors='pt',add_generation_prompt=True).to(self.args.device)
|
|
|
|
if (self.last_request_id is not None) and self.last_request_id == thread_id:
|
|
x = self.generated_ids[:,:self.seq_length]
|
|
y = input_ids[:,:self.seq_length]
|
|
# We can only hope that the input_ids are the same
|
|
unequal_mask = torch.ne(x,y)
|
|
unequal_positions = torch.nonzero(unequal_mask)
|
|
num_unequal_elements = unequal_mask.sum().item()
|
|
logger.warn(f'num_unequal_elements: {num_unequal_elements}')
|
|
|
|
input_ids = input_ids[:,self.seq_length:]
|
|
logger.debug(f'get input ids of shape {input_ids.shape}')
|
|
return input_ids
|
|
|
|
def append_new_tokens(self,new_tokens:int)->Optional[str]:
|
|
self.generated_ids[0,self.seq_length] = new_tokens
|
|
self.seq_length+=1
|
|
return self.streamer.put(new_tokens)
|
|
|
|
def logits_to_token(self,logits:torch.Tensor):
|
|
logits = logits/self.args.temperature
|
|
|
|
for token_idx in self.ever_generated_ids:
|
|
if logits[token_idx] < 0:
|
|
logits[token_idx] *= self.args.repetition_penalty
|
|
else:
|
|
logits[token_idx] /= self.args.repetition_penalty
|
|
|
|
probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
|
|
sample = True
|
|
if sample:
|
|
last = torch.multinomial(probs, num_samples=1)
|
|
else:
|
|
_, last = torch.topk(probs, k=1, dim=-1)
|
|
|
|
last = last.item()
|
|
self.ever_generated_ids.add(last)
|
|
return last
|
|
|
|
|
|
|
|
def decode_one_tokens(self):
|
|
if self.use_static_cache:
|
|
mask = torch.ones((1,self.seq_length)).to(self.args.device)
|
|
logits = self.model(
|
|
self.current_ids,
|
|
cache_position=self.active_cache_position,
|
|
past_key_values=self.cache,
|
|
attention_mask=mask,
|
|
return_dict=False,
|
|
use_cache=True
|
|
)[0]
|
|
else:
|
|
logits = self.model(
|
|
self.current_ids,
|
|
return_dict=False
|
|
)[0]
|
|
logits = logits[0,-1,:]
|
|
|
|
return self.logits_to_token(logits)
|
|
|
|
@torch.no_grad
|
|
def prefill(self,input_ids:torch.Tensor,is_new:bool):
|
|
input_ids_length = input_ids.shape[-1]
|
|
self.profiler.set_counter('prefill',input_ids_length)
|
|
logger.debug(f'input_ids: {input_ids.shape}')
|
|
|
|
|
|
if is_new:
|
|
self.cache.reset()
|
|
self.ever_generated_ids.clear()
|
|
former_seq_length = 0
|
|
self.seq_length = input_ids_length
|
|
self.generated_ids = torch.zeros(
|
|
self.args.batch_size, self.seq_length + self.args.max_new_tokens + 1, dtype=torch.int, device=self.args.device
|
|
)
|
|
else:
|
|
logger.debug(f'generate_ids: {self.generated_ids.shape}')
|
|
former_seq_length = self.seq_length
|
|
self.seq_length += input_ids_length
|
|
expected_length = self.seq_length + self.args.max_new_tokens+1
|
|
delta_length = expected_length - self.generated_ids.shape[-1]
|
|
if delta_length>0:
|
|
new_generate_ids = torch.zeros(
|
|
self.args.batch_size, delta_length, dtype=torch.int, device=self.args.device
|
|
)
|
|
self.generated_ids = torch.cat([self.generated_ids,new_generate_ids],dim=-1)
|
|
logger.debug(f'cache position: {former_seq_length} to {self.seq_length}')
|
|
cache_position = torch.arange(former_seq_length,self.seq_length, device=self.args.device)
|
|
self.generated_ids[:,cache_position] = input_ids.to(self.args.device).to(torch.int)
|
|
|
|
mask = torch.ones((1,self.seq_length)).to(self.args.device)
|
|
device = input_ids.device
|
|
if not(type(self) is TransformersInterface):
|
|
input_ids = input_ids.to("cpu")
|
|
inputs_embeds = self.model.model.embed_tokens(input_ids).to(device)
|
|
if self.use_static_cache:
|
|
logits = self.model(
|
|
inputs_embeds=inputs_embeds, cache_position=cache_position, past_key_values=self.cache,return_dict=False, use_cache=True,attention_mask=mask
|
|
)[0]
|
|
else:
|
|
logits = self.model(
|
|
inputs_embeds=inputs_embeds,return_dict=False
|
|
)[0]
|
|
|
|
|
|
|
|
next_token = self.logits_to_token(logits[0,-1,:])
|
|
yield self.append_new_tokens(next_token)
|
|
|
|
@torch.no_grad
|
|
def generate(self):
|
|
self.profiler.set_counter('decode',0)
|
|
for _ in range(1, self.args.max_new_tokens):
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
|
|
next_token = self.decode_one_tokens()
|
|
self.profiler.inc('decode')
|
|
if next_token == self.tokenizer.eos_token_id:
|
|
assert self.args.batch_size == 1
|
|
break
|
|
yield self.append_new_tokens(next_token)
|
|
yield self.streamer.end()
|
|
|
|
def check_is_new(self,thread_id:str):
|
|
if not self.use_static_cache:
|
|
return True
|
|
if self.last_request_id is None:
|
|
self.last_request_id = thread_id
|
|
return True
|
|
else:
|
|
if self.last_request_id==thread_id:
|
|
return False
|
|
else:
|
|
self.last_request_id = thread_id
|
|
return True
|
|
|
|
async def inference(self,local_messages,thread_id:str):
|
|
self.profiler.create_and_start_timer('tokenize')
|
|
if isinstance(local_messages,List):
|
|
input_ids = self.format_and_tokenize_input_ids(thread_id,local_messages)
|
|
elif isinstance(local_messages,str):
|
|
input_ids = self.tokenize_prompt(local_messages)
|
|
else:
|
|
raise ValueError('local_messages should be List or str')
|
|
|
|
self.profiler.pause_timer('tokenize')
|
|
|
|
self.profiler.create_and_start_timer('prefill')
|
|
for t in self.prefill(input_ids,self.check_is_new(thread_id)):
|
|
if t is not None:
|
|
print(t,end='')
|
|
yield t
|
|
self.profiler.pause_timer('prefill')
|
|
|
|
self.profiler.create_and_start_timer('decode')
|
|
for t in self.generate():
|
|
if t is not None:
|
|
print(t,end='')
|
|
yield t
|
|
print('')
|
|
self.profiler.pause_timer('decode')
|
|
self.report_last_time_performance()
|
|
|