mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
186 lines
No EOL
7.3 KiB
Python
186 lines
No EOL
7.3 KiB
Python
import argparse
|
|
import random
|
|
import time
|
|
import json
|
|
import requests
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
import os
|
|
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
|
os.environ['https_proxy'] = ''
|
|
os.environ['http_proxy'] = ''
|
|
hint = 'There is a single choice question. Answer the question by replying A, B, C, D. No other answers are accepted. Just the letter.'
|
|
|
|
|
|
class DataEvaluator:
|
|
def __init__(self):
|
|
# self.template_prompt = template_prompt
|
|
self.data = []
|
|
|
|
def load_data(self, file_path):
|
|
"""
|
|
Load data from a Parquet file into a list.
|
|
Each record in the Parquet file should represent an individual record.
|
|
"""
|
|
# 读取 Parquet 文件
|
|
# dataset = load_dataset('parquet', data_files=file_path)
|
|
splits = {'test': 'all/test-00000-of-00001.parquet', 'validation': 'all/validation-00000-of-00001.parquet',
|
|
'dev': 'all/dev-00000-of-00001.parquet',
|
|
'auxiliary_train': 'all/auxiliary_train-00000-of-00001.parquet'}
|
|
df = pd.read_parquet("hf://datasets/cais/mmlu/" + splits["test"])
|
|
|
|
for _, row in df.iterrows():
|
|
self.data.append(row.to_dict())
|
|
|
|
def get_prompt(self, record):
|
|
"""
|
|
Combine fields from a record with the template prompt to create a full prompt.
|
|
:param record: Dictionary containing fields to populate the template.
|
|
:return: A formatted prompt string.
|
|
"""
|
|
# 查看ABCD。。。的选项
|
|
options_str = "\n".join([f"{chr(65 + i)}. {opt}" for i, opt in enumerate(record['choices'])])
|
|
prompt = hint + "\nQuestion: " + record['question'] + "\n" + options_str + "\nAnswer: '"
|
|
return prompt
|
|
|
|
def post_processing(self, text):
|
|
"""
|
|
Perform post-processing on the prediction string.
|
|
:param text: The raw prediction string.
|
|
:return: Processed prediction string.
|
|
"""
|
|
text = text.lstrip('\n').split('\n')[-1]
|
|
return text[-1:]
|
|
|
|
def score(self, pred, answers):
|
|
"""
|
|
Calculate scores between the prediction and the answer.
|
|
Uses ROUGE scores as the evaluation metric.
|
|
:param pred: The predicted string.
|
|
:param answer: The reference answer string.
|
|
:return: A dictionary containing ROUGE scores.
|
|
"""
|
|
for answer in answers:
|
|
if pred == answer:
|
|
return 1
|
|
|
|
return 0
|
|
|
|
# Function to generate text using API
|
|
def generate_text(api_url, question, model_name, stream=False):
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'Content-Type': 'application/json',
|
|
# 添加 API Key
|
|
'Authorization' : 'Bearer '
|
|
}
|
|
data = {
|
|
"messages": [{"content": question, "role": "user"}],
|
|
"model": model_name,
|
|
"stream": stream,
|
|
# "temperature": 0.0
|
|
}
|
|
|
|
print("POST data:", data)
|
|
response = requests.post(api_url, headers=headers, json=data)
|
|
|
|
if response.status_code == 200:
|
|
result = response.json()
|
|
return result.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
|
|
else:
|
|
print(f"API Request failed with status code {response.status_code}")
|
|
return None
|
|
|
|
# Main function to handle multiple evaluations
|
|
def main(concurrent_requests, data_evaluator: DataEvaluator, result_file, log_file, api_url, model_name):
|
|
start_total_time = time.time()
|
|
|
|
total_score = 0
|
|
|
|
results = []
|
|
# 设置随机数种子
|
|
random.seed(42)
|
|
random.shuffle(data_evaluator.data)
|
|
for i in range(min(concurrent_requests, len(data_evaluator.data))):
|
|
# Randomly select a data item from data for each request
|
|
data_item = data_evaluator.data[i]
|
|
question = data_evaluator.get_prompt(data_item)
|
|
# print(question)
|
|
|
|
# Start the timer for this evaluation
|
|
start_time = time.time()
|
|
try:
|
|
# Generate prediction using the API
|
|
prediction = generate_text(api_url, question, model_name)
|
|
|
|
if prediction is None:
|
|
raise Exception(f"Failed to get prediction for {question}")
|
|
|
|
answer = chr(data_item['answer'] + 65)
|
|
# Compute score
|
|
score = data_evaluator.score(data_evaluator.post_processing(prediction), answer)
|
|
|
|
# Calculate the time taken
|
|
elapsed_time = time.time() - start_time
|
|
|
|
# Collect the result data
|
|
result_data = {
|
|
"question_id": i,
|
|
"answer": answer,
|
|
"prediction": data_evaluator.post_processing(prediction),
|
|
"score": score,
|
|
"time": elapsed_time
|
|
}
|
|
|
|
# Write results to result.json with each field on a new line
|
|
with open(result_file, 'a', encoding='utf-8') as f:
|
|
json.dump(result_data, f, ensure_ascii=False, indent=4)
|
|
f.write("\n") # Ensure each JSON object is on a new line
|
|
|
|
results.append(result_data)
|
|
|
|
# Aggregate scores
|
|
total_score += score
|
|
|
|
except Exception as e:
|
|
print(f"Error processing request {i}: {e}")
|
|
|
|
# Calculate total time and throughput
|
|
total_time = time.time() - start_total_time
|
|
throughput = concurrent_requests / total_time
|
|
|
|
# Log the total time, throughput, and average ROUGE scores
|
|
with open(log_file, 'a', encoding='utf-8') as log_f:
|
|
log_f.write(f"Total Time: {total_time:.2f} seconds\n")
|
|
log_f.write(f"Throughput: {throughput:.2f} requests per second\n")
|
|
log_f.write(f"Average Scores: {total_score / concurrent_requests}\n")
|
|
log_f.write('-' * 40 + '\n')
|
|
|
|
print(f"Results saved to {result_file}")
|
|
print(f"Log saved to {log_file}")
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="API Generate Tester")
|
|
parser.add_argument("--concurrent", type=int, default=1000, help="Number of concurrent evaluations")
|
|
parser.add_argument("--file", type=str, default="cais/mmlu", help="Path to the mmlu.jsonl file")
|
|
parser.add_argument("--result", type=str, default="./mmlu_result_silicon.json", help="Path to save the result JSON file")
|
|
parser.add_argument("--log", type=str, default="./mmlu_result_silicon.log", help="Path to save the log file")
|
|
parser.add_argument("--model", type=str, default="Pro/deepseek-ai/DeepSeek-V3", help="Model name or path")
|
|
parser.add_argument("--api_url", type=str, default="http://localhost:10003/v1/chat/completions", help="API URL")
|
|
# parser.add_argument("--api_url", type=str, default="https://api.siliconflow.cn/v1/chat/completions", help="API URL")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Load the data from the provided file
|
|
# template_prompt = hint + "\nQuestion: {question}\nA. {options}\nB. {option_b}\nC. {option_c}\nD. {option_d}\nAnswer: '"
|
|
# template_prompt_pro = hint + "\nQuestion: {question}\nA. {options[0]}\nB. {options[1]}\nC. {options[2]}\nD. {options[3]}\nE. {options[4]}\nF. {options[5]}\nG. \
|
|
# {options[6]}\nH. {options[7]}\nI. {options[8]}\nJ. {options[9]}\nAnswer: '"
|
|
|
|
|
|
# Load the data from the provided file
|
|
data_evaluator = DataEvaluator()
|
|
data_evaluator.load_data(args.file)
|
|
|
|
# Run the main function with the specified number of concurrent evaluations
|
|
main(args.concurrent, data_evaluator, args.result, args.log, args.api_url, args.model) |