mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
385 lines
12 KiB
Python
385 lines
12 KiB
Python
# Adapted from
|
|
# https://github.com/sgl-project/sglang/blob/9f635ea50de920aa507f486daafba26a5b837574/python/sglang/srt/layers/attention/triton_ops/decode_attention.py
|
|
# which was originally adapted from
|
|
# https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage1.py
|
|
# https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage2.py
|
|
|
|
import triton
|
|
import triton.language as tl
|
|
from ktransformers.util.vendors import device_manager, get_device, to_device, GPUVendor
|
|
@triton.jit
|
|
def tanh(x):
|
|
# Tanh is just a scaled sigmoid
|
|
return 2 * tl.sigmoid(2 * x) - 1
|
|
|
|
@triton.jit
|
|
def _fwd_grouped_kernel_stage1(
|
|
Q,
|
|
K_Buffer,
|
|
V_Buffer,
|
|
sm_scale,
|
|
Req_to_tokens,
|
|
B_Seqlen,
|
|
Att_Out,
|
|
stride_req_to_tokens_b,
|
|
stride_qbs,
|
|
stride_qh,
|
|
stride_buf_kbs,
|
|
stride_buf_kh,
|
|
stride_buf_vbs,
|
|
stride_buf_vh,
|
|
stride_mid_ob,
|
|
stride_mid_oh,
|
|
stride_mid_os,
|
|
kv_group_num: tl.constexpr,
|
|
q_head_num: tl.constexpr,
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
BLOCK_DPE: tl.constexpr,
|
|
BLOCK_DV: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
BLOCK_H: tl.constexpr,
|
|
NUM_KV_SPLITS: tl.constexpr,
|
|
PAGE_SIZE: tl.constexpr,
|
|
logit_cap: tl.constexpr,
|
|
Lk: tl.constexpr,
|
|
Lv: tl.constexpr,
|
|
):
|
|
cur_batch = tl.program_id(0)
|
|
cur_head_id = tl.program_id(1)
|
|
cur_kv_head = cur_head_id // tl.cdiv(kv_group_num, BLOCK_H)
|
|
split_kv_id = tl.program_id(2)
|
|
|
|
if kv_group_num > BLOCK_H:
|
|
VALID_BLOCK_H: tl.constexpr = BLOCK_H
|
|
else:
|
|
VALID_BLOCK_H: tl.constexpr = kv_group_num
|
|
cur_head = cur_head_id * VALID_BLOCK_H + tl.arange(0, BLOCK_H)
|
|
mask_h = cur_head < (cur_head_id + 1) * VALID_BLOCK_H
|
|
mask_h = mask_h & (cur_head < q_head_num)
|
|
|
|
offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
offs_dv = tl.arange(0, BLOCK_DV)
|
|
mask_d = offs_d < Lk
|
|
mask_dv = offs_dv < Lv
|
|
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
|
cur_batch_req_idx = cur_batch
|
|
|
|
offs_q = cur_batch * stride_qbs + cur_head[:, None] * stride_qh + offs_d[
|
|
None, :]
|
|
q = tl.load(Q + offs_q,
|
|
mask=(mask_h[:, None]) & (mask_d[None, :]),
|
|
other=0.0)
|
|
|
|
if BLOCK_DPE > 0:
|
|
offs_dpe = BLOCK_DMODEL + tl.arange(0, BLOCK_DPE)
|
|
mask_dpe = offs_dpe < Lk
|
|
off_qpe = (cur_batch * stride_qbs + cur_head[:, None] * stride_qh +
|
|
offs_dpe[None, :])
|
|
qpe = tl.load(Q + off_qpe,
|
|
mask=(mask_h[:, None]) & (mask_dpe[None, :]),
|
|
other=0.0)
|
|
|
|
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
|
|
split_kv_start = kv_len_per_split * split_kv_id
|
|
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split,
|
|
cur_batch_seq_len)
|
|
|
|
e_max = tl.zeros([BLOCK_H], dtype=tl.float32) - float("inf")
|
|
e_sum = tl.zeros([BLOCK_H], dtype=tl.float32)
|
|
acc = tl.zeros([BLOCK_H, BLOCK_DV], dtype=tl.float32)
|
|
|
|
if split_kv_end > split_kv_start:
|
|
for start_n in range(split_kv_start, split_kv_end, BLOCK_N):
|
|
offs_n = start_n + tl.arange(0, BLOCK_N)
|
|
kv_page_number = tl.load(
|
|
Req_to_tokens + stride_req_to_tokens_b * cur_batch_req_idx +
|
|
offs_n // PAGE_SIZE,
|
|
mask=offs_n < split_kv_end,
|
|
other=0,
|
|
)
|
|
kv_loc = kv_page_number * PAGE_SIZE + offs_n % PAGE_SIZE
|
|
offs_buf_k = (kv_loc[None, :] * stride_buf_kbs +
|
|
cur_kv_head * stride_buf_kh + offs_d[:, None])
|
|
k = tl.load(
|
|
K_Buffer + offs_buf_k,
|
|
mask=(offs_n[None, :] < split_kv_end) & (mask_d[:, None]),
|
|
other=0.0,
|
|
)
|
|
qk = tl.dot(q, k.to(q.dtype))
|
|
|
|
if BLOCK_DPE > 0:
|
|
offs_buf_kpe = (kv_loc[None, :] * stride_buf_kbs +
|
|
cur_kv_head * stride_buf_kh +
|
|
offs_dpe[:, None])
|
|
kpe = tl.load(
|
|
K_Buffer + offs_buf_kpe,
|
|
mask=(offs_n[None, :] < split_kv_end) &
|
|
(mask_dpe[:, None]),
|
|
other=0.0,
|
|
)
|
|
qk += tl.dot(qpe, kpe.to(qpe.dtype))
|
|
qk *= sm_scale
|
|
|
|
if logit_cap > 0:
|
|
qk = logit_cap * tanh(qk / logit_cap)
|
|
|
|
qk = tl.where(mask_h[:, None] & (offs_n[None, :] < split_kv_end),
|
|
qk, float("-inf"))
|
|
|
|
offs_buf_v = (kv_loc[:, None] * stride_buf_vbs +
|
|
cur_kv_head * stride_buf_vh + offs_dv[None, :])
|
|
v = tl.load(
|
|
V_Buffer + offs_buf_v,
|
|
mask=(offs_n[:, None] < split_kv_end) & (mask_dv[None, :]),
|
|
other=0.0,
|
|
)
|
|
|
|
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
|
|
re_scale = tl.exp(e_max - n_e_max)
|
|
p = tl.exp(qk - n_e_max[:, None])
|
|
acc *= re_scale[:, None]
|
|
acc += tl.dot(p.to(v.dtype), v)
|
|
|
|
e_sum = e_sum * re_scale + tl.sum(p, 1)
|
|
e_max = n_e_max
|
|
|
|
offs_mid_o = (cur_batch * stride_mid_ob +
|
|
cur_head[:, None] * stride_mid_oh +
|
|
split_kv_id * stride_mid_os + offs_dv[None, :])
|
|
|
|
tl.store(
|
|
Att_Out + offs_mid_o,
|
|
acc / e_sum[:, None],
|
|
mask=(mask_h[:, None]) & (mask_dv[None, :]),
|
|
)
|
|
|
|
offs_mid_o_1 = (cur_batch * stride_mid_ob + cur_head * stride_mid_oh +
|
|
split_kv_id * stride_mid_os + Lv)
|
|
|
|
tl.store(
|
|
Att_Out + offs_mid_o_1,
|
|
e_max + tl.log(e_sum),
|
|
mask=mask_h,
|
|
)
|
|
|
|
def _decode_grouped_att_m_fwd(
|
|
q,
|
|
k_buffer,
|
|
v_buffer,
|
|
att_out,
|
|
Req_to_tokens,
|
|
B_Seqlen,
|
|
num_kv_splits,
|
|
sm_scale,
|
|
page_size,
|
|
logit_cap,
|
|
):
|
|
BLOCK = 32
|
|
Lk = k_buffer.shape[-1]
|
|
Lv = v_buffer.shape[-1]
|
|
|
|
# [TODO] work around shmem limit on MI3xx
|
|
|
|
# TODO: support hip
|
|
if device_manager.gpu_vendor == GPUVendor.AMD and Lk >= 576:
|
|
BLOCK = 16
|
|
|
|
if Lk == 576:
|
|
BLOCK_DMODEL = 512
|
|
BLOCK_DPE = 64
|
|
elif Lk == 288:
|
|
BLOCK_DMODEL = 256
|
|
BLOCK_DPE = 32
|
|
else:
|
|
BLOCK_DMODEL = triton.next_power_of_2(Lk)
|
|
BLOCK_DPE = 0
|
|
BLOCK_DV = triton.next_power_of_2(Lv)
|
|
|
|
batch, head_num = q.shape[0], q.shape[1]
|
|
kv_group_num = q.shape[1] // k_buffer.shape[-2]
|
|
|
|
BLOCK_H = 16
|
|
NUM_KV_SPLITS = num_kv_splits
|
|
grid = (
|
|
batch,
|
|
triton.cdiv(head_num, min(BLOCK_H, kv_group_num)),
|
|
NUM_KV_SPLITS,
|
|
)
|
|
|
|
extra_kargs = {}
|
|
# TODO: support hip
|
|
"""
|
|
if is_hip_:
|
|
# https://rocm.docs.amd.com/en/docs-6.2.0/how-to/llm-fine-tuning-optimization/optimizing-triton-kernel.html
|
|
# https://github.com/triton-lang/triton/blob/main/third_party/amd/backend/compiler.py
|
|
extra_kargs = {
|
|
"waves_per_eu": 4,
|
|
"matrix_instr_nonkdim": 16,
|
|
"kpack": 2
|
|
}
|
|
"""
|
|
|
|
_fwd_grouped_kernel_stage1[grid](
|
|
q,
|
|
k_buffer,
|
|
v_buffer,
|
|
sm_scale,
|
|
Req_to_tokens,
|
|
B_Seqlen,
|
|
att_out,
|
|
Req_to_tokens.stride(0),
|
|
q.stride(0),
|
|
q.stride(1),
|
|
k_buffer.stride(-3), # Assume (..., PAGE_SIZE, NUM_HEADS, HEAD_DIM)
|
|
k_buffer.stride(-2), # Assume (..., PAGE_SIZE, NUM_HEADS, HEAD_DIM)
|
|
v_buffer.stride(-3), # Assume (..., PAGE_SIZE, NUM_HEADS, HEAD_DIM)
|
|
v_buffer.stride(-2), # Assume (..., PAGE_SIZE, NUM_HEADS, HEAD_DIM)
|
|
att_out.stride(0),
|
|
att_out.stride(1),
|
|
att_out.stride(2),
|
|
kv_group_num=kv_group_num,
|
|
q_head_num=head_num,
|
|
BLOCK_DMODEL=BLOCK_DMODEL,
|
|
BLOCK_DPE=BLOCK_DPE,
|
|
BLOCK_DV=BLOCK_DV,
|
|
BLOCK_N=BLOCK,
|
|
BLOCK_H=BLOCK_H,
|
|
NUM_KV_SPLITS=NUM_KV_SPLITS,
|
|
PAGE_SIZE=page_size,
|
|
logit_cap=logit_cap,
|
|
num_warps=4,
|
|
num_stages=2,
|
|
Lk=Lk,
|
|
Lv=Lv,
|
|
**extra_kargs,
|
|
)
|
|
|
|
@triton.jit
|
|
def _fwd_kernel_stage2(
|
|
Mid_O,
|
|
o,
|
|
B_Seqlen,
|
|
stride_mid_ob,
|
|
stride_mid_oh,
|
|
stride_mid_os,
|
|
stride_obs,
|
|
stride_oh,
|
|
NUM_KV_SPLITS: tl.constexpr,
|
|
BLOCK_DV: tl.constexpr,
|
|
Lv: tl.constexpr,
|
|
):
|
|
cur_batch = tl.program_id(0)
|
|
cur_head = tl.program_id(1)
|
|
|
|
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
|
|
|
offs_d = tl.arange(0, BLOCK_DV)
|
|
mask_d = offs_d < Lv
|
|
|
|
e_sum = 0.0
|
|
e_max = -float("inf")
|
|
acc = tl.zeros([BLOCK_DV], dtype=tl.float32)
|
|
|
|
offs_v = cur_batch * stride_mid_ob + cur_head * stride_mid_oh + offs_d
|
|
offs_logic = cur_batch * stride_mid_ob + cur_head * stride_mid_oh + Lv
|
|
|
|
for split_kv_id in range(0, NUM_KV_SPLITS):
|
|
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
|
|
split_kv_start = kv_len_per_split * split_kv_id
|
|
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split,
|
|
cur_batch_seq_len)
|
|
|
|
if split_kv_end > split_kv_start:
|
|
tv = tl.load(Mid_O + offs_v + split_kv_id * stride_mid_os,
|
|
mask=mask_d,
|
|
other=0.0)
|
|
tlogic = tl.load(Mid_O + offs_logic + split_kv_id * stride_mid_os)
|
|
n_e_max = tl.maximum(tlogic, e_max)
|
|
|
|
old_scale = tl.exp(e_max - n_e_max)
|
|
acc *= old_scale
|
|
exp_logic = tl.exp(tlogic - n_e_max)
|
|
acc += exp_logic * tv
|
|
|
|
e_sum = e_sum * old_scale + exp_logic
|
|
e_max = n_e_max
|
|
|
|
tl.store(
|
|
o + cur_batch * stride_obs + cur_head * stride_oh + offs_d,
|
|
acc / e_sum,
|
|
mask=mask_d,
|
|
)
|
|
|
|
def _decode_softmax_reducev_fwd(
|
|
logits,
|
|
q,
|
|
o,
|
|
v_buffer,
|
|
b_seq_len,
|
|
num_kv_splits,
|
|
):
|
|
batch, head_num = q.shape[0], q.shape[1]
|
|
Lv = v_buffer.shape[-1]
|
|
BLOCK_DV = triton.next_power_of_2(Lv)
|
|
|
|
NUM_KV_SPLITS = num_kv_splits
|
|
|
|
extra_kargs = {}
|
|
# TODO: support hip
|
|
"""
|
|
if is_hip_:
|
|
# https://rocm.docs.amd.com/en/docs-6.2.0/how-to/llm-fine-tuning-optimization/optimizing-triton-kernel.html
|
|
# https://github.com/triton-lang/triton/blob/main/third_party/amd/backend/compiler.py
|
|
extra_kargs = {
|
|
"waves_per_eu": 4,
|
|
"matrix_instr_nonkdim": 16,
|
|
"kpack": 2
|
|
}
|
|
"""
|
|
|
|
grid = (batch, head_num)
|
|
_fwd_kernel_stage2[grid](
|
|
logits,
|
|
o,
|
|
b_seq_len,
|
|
logits.stride(0),
|
|
logits.stride(1),
|
|
logits.stride(2),
|
|
o.stride(0),
|
|
o.stride(1),
|
|
NUM_KV_SPLITS=NUM_KV_SPLITS,
|
|
BLOCK_DV=BLOCK_DV,
|
|
Lv=Lv,
|
|
num_warps=4,
|
|
num_stages=2,
|
|
**extra_kargs,
|
|
)
|
|
|
|
def decode_attention_fwd_grouped(
|
|
q,
|
|
k_buffer,
|
|
v_buffer,
|
|
o,
|
|
req_to_token,
|
|
b_seq_len,
|
|
attn_logits,
|
|
num_kv_splits,
|
|
sm_scale,
|
|
page_size,
|
|
logit_cap=0.0,
|
|
):
|
|
_decode_grouped_att_m_fwd(
|
|
q,
|
|
k_buffer,
|
|
v_buffer,
|
|
attn_logits,
|
|
req_to_token,
|
|
b_seq_len,
|
|
num_kv_splits,
|
|
sm_scale,
|
|
page_size,
|
|
logit_cap,
|
|
)
|
|
|
|
_decode_softmax_reducev_fwd(attn_logits, q, o, v_buffer, b_seq_len,
|
|
num_kv_splits)
|