kvcache-ai-ktransformers/csrc/ktransformers_ext/bench/bench_moe_amx.py
2025-04-25 14:47:16 +00:00

107 lines
4.3 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Description :
Author : chenht2022
Date : 2025-04-25 18:28:12
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2025-04-25 18:28:12
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
import time
sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
expert_num = 8
hidden_size = 7168
intermediate_size = 2048
max_len = 25600
n_routed_experts = 8
layer_num = 10
qlen = 1024
CPUInfer = cpuinfer_ext.CPUInfer(65)
warm_up_iter = 100
test_iter = 100
def bench_moe(quant_mode: str):
with torch.inference_mode(mode=True):
if quant_mode == "bf16":
bytes_per_elem = 2.000000
elif quant_mode == "int8":
bytes_per_elem = 1.000000
else:
assert(False)
moes = []
gate_projs = []
up_projs = []
down_projs = []
for _ in range(layer_num):
gate_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
up_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
down_proj = torch.randn((expert_num, hidden_size, intermediate_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
config = cpuinfer_ext.moe.AMX_MOEConfig(expert_num, n_routed_experts, hidden_size, intermediate_size, max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr())
if quant_mode == "bf16":
moe = cpuinfer_ext.moe.AMXBF16_MOE(config)
CPUInfer.submit(moe.load_weights())
CPUInfer.sync()
elif quant_mode == "int8":
moe = cpuinfer_ext.moe.AMXInt8_MOE(config)
CPUInfer.submit(moe.load_weights())
CPUInfer.sync()
gate_projs.append(gate_proj)
up_projs.append(up_proj)
down_projs.append(down_proj)
moes.append(moe)
expert_ids = torch.stack([torch.stack([torch.randperm(expert_num, dtype=torch.int64, device = "cuda")[:n_routed_experts] for _ in range(qlen)]) for _ in range(layer_num)]).to("cpu").contiguous()
weights = torch.rand((layer_num, qlen, n_routed_experts), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
input = torch.randn((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
output = torch.empty((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
qlen_tensor = torch.tensor([qlen], dtype=torch.int32)
# warm up
for i in range(warm_up_iter):
CPUInfer.submit(
moes[i % layer_num].forward(
qlen,
n_routed_experts,
expert_ids[i % layer_num].data_ptr(),
weights[i % layer_num].data_ptr(),
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr(),
qlen_tensor.data_ptr()
)
)
CPUInfer.sync()
# test
start = time.perf_counter()
for i in range(test_iter):
CPUInfer.submit(
moes[i % layer_num].forward(
qlen,
n_routed_experts,
expert_ids[i % layer_num].data_ptr(),
weights[i % layer_num].data_ptr(),
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr(),
qlen_tensor.data_ptr()
)
)
CPUInfer.sync()
end = time.perf_counter()
total_time = end - start
print('Quant mode: ', quant_mode)
print('Time(s): ', total_time)
print('Iteration: ', test_iter)
print('Time(us) per iteration: ', total_time / test_iter * 1000000)
print('Bandwidth: ', hidden_size * intermediate_size * 3 * n_routed_experts * bytes_per_elem * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
print('Flops: ', hidden_size * intermediate_size * qlen * 3 * n_routed_experts * 2 * test_iter / total_time / 1000 / 1000 / 1000, 'GFLOPS')
print('')
bench_moe("bf16")
bench_moe("int8")