mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-09 22:05:30 +00:00
132 lines
4.9 KiB
Python
132 lines
4.9 KiB
Python
import asyncio
|
|
import json
|
|
import sys
|
|
import aiohttp
|
|
import random
|
|
import argparse
|
|
import yaml
|
|
import os
|
|
import time
|
|
from time import sleep
|
|
|
|
decodesz = 128
|
|
# Server URL (replace with your server URL)
|
|
decodesz_list = [128]
|
|
prefill_speeds = []
|
|
decode_speeds = []
|
|
|
|
async def fetch_message_once(session, request_id, messages, max_tokens, model):
|
|
try:
|
|
payload = {
|
|
"messages": messages,
|
|
"model": model,
|
|
"temperature": 0.3,
|
|
"top_p": 1.0,
|
|
"stream": True,
|
|
"return_speed": True,
|
|
"max_tokens": max_tokens,
|
|
}
|
|
|
|
headers = {
|
|
'accept': 'application/json',
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
async with session.post(SERVER_URL, json=payload, headers=headers, timeout=500000) as response:
|
|
if response.status != 200:
|
|
print(f"[Request {request_id}] Error: Status {response.status}")
|
|
return None, None, None
|
|
|
|
buffer = ""
|
|
usage_info = None
|
|
answer = ""
|
|
|
|
async for line in response.content:
|
|
decoded_line = line.decode("utf-8").strip()
|
|
if not decoded_line or not decoded_line.startswith("data: "):
|
|
continue
|
|
|
|
decoded_line = decoded_line[6:].strip()
|
|
if not decoded_line:
|
|
continue
|
|
|
|
response_data = json.loads(decoded_line)
|
|
|
|
if "usage" in response_data:
|
|
usage_info = response_data["usage"]
|
|
|
|
choices = response_data.get("choices", [])
|
|
if not choices:
|
|
continue
|
|
|
|
delta = choices[0].get("delta", {})
|
|
token = delta.get("content", "")
|
|
if token:
|
|
buffer += token
|
|
answer += token
|
|
|
|
finish_reason = choices[0].get("finish_reason", None)
|
|
if finish_reason:
|
|
break
|
|
|
|
return answer.strip(), usage_info, buffer.strip()
|
|
|
|
except Exception as e:
|
|
print(f"[Request {request_id}] Exception: {e}")
|
|
return None, None, None
|
|
|
|
|
|
async def multi_turn_conversation(session, request_id, rounds, max_tokens, model):
|
|
prompt = ["介绍一下秦始皇", "秦始皇的成就有哪些", "秦始皇的历史影响", "介绍一下秦始皇的陵墓", "秦始皇的统一措施", "秦始皇的政治制度", "秦始皇的文化政策", "秦始皇的军事行动"]
|
|
|
|
messages = [{"role": "system", "content": ""}]
|
|
global prefill_speeds, decode_speeds
|
|
|
|
for i in range(rounds):
|
|
user_msg = f"这是第{i + 1}轮对话,请回答以下问题:{prompt[i % len(prompt)]}"
|
|
messages.append({"role": "user", "content": user_msg})
|
|
print(f"\n[Request {request_id}] >> User: {user_msg}")
|
|
|
|
answer, usage_info, _ = await fetch_message_once(session, request_id, messages, max_tokens, model)
|
|
if answer:
|
|
messages.append({"role": "user", "content": answer})
|
|
print(f"[Request {request_id}] << Assistant: {answer}")
|
|
|
|
if usage_info:
|
|
prefill_speed = usage_info["prompt_tokens"] / usage_info["prefill_time"]
|
|
decode_speed = usage_info["completion_tokens"] / usage_info["decode_time"]
|
|
prefill_speeds.append(prefill_speed)
|
|
decode_speeds.append(decode_speed)
|
|
print(f'[Request {request_id}] prefill speed: {prefill_speed}')
|
|
print(f'[Request {request_id}] decode speed: {decode_speed}')
|
|
|
|
|
|
async def main(concurrent_requests, rounds, max_tokens, model):
|
|
async with aiohttp.ClientSession() as session:
|
|
tasks = [multi_turn_conversation(session, i, rounds, max_tokens, model) for i in range(concurrent_requests)]
|
|
await asyncio.gather(*tasks)
|
|
|
|
if prefill_speeds:
|
|
import numpy as np
|
|
print(f"\n=== Summary ===")
|
|
print(f"Total concurrency: {concurrent_requests}")
|
|
print(f"Avg prefill speed: {np.mean(prefill_speeds)}")
|
|
print(f"Avg decode speed: {np.mean(decode_speeds)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Event Stream Request Tester")
|
|
parser.add_argument("--concurrent", type=int, default=1, help="Number of concurrent requests")
|
|
parser.add_argument("--model", type=str, default="DeepSeek-V3", help="Model name")
|
|
parser.add_argument("--prompt_lens", type=int, default=1024, help="prefill prompt lens, 1024 or 2048")
|
|
parser.add_argument("--api_url", type=str, default="http://localhost:10002/v1/chat/completions", help="API URL")
|
|
parser.add_argument("--max_tokens", type=int, default=50, help="max decode tokens")
|
|
parser.add_argument("--rounds", type=int, default=8, help="Number of multi-turn rounds (before final query)")
|
|
|
|
args = parser.parse_args()
|
|
SERVER_URL = args.api_url
|
|
max_tokens = args.max_tokens
|
|
model = args.model
|
|
|
|
asyncio.run(main(args.concurrent, args.rounds, max_tokens, model))
|
|
|