mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 12:40:02 +00:00
82 lines
2.8 KiB
Python
82 lines
2.8 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Description :
|
|
Author : chenht2022
|
|
Date : 2024-07-25 10:32:05
|
|
Version : 1.0.0
|
|
LastEditors : chenht2022
|
|
LastEditTime : 2024-08-06 10:37:28
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
'''
|
|
import os, sys
|
|
import time
|
|
sys.path.append(os.path.dirname(__file__) + '/../build')
|
|
import cpuinfer_ext
|
|
import torch
|
|
|
|
hidden_size = 5120
|
|
intermediate_size = 3072
|
|
stride = 32
|
|
group_max_len = 1024
|
|
gate_type = 1 # ggml_type::GGML_TYPE_F16
|
|
up_type = 1 # ggml_type::GGML_TYPE_F16
|
|
down_type = 1 # ggml_type::GGML_TYPE_F16
|
|
hidden_type = 1 # ggml_type::GGML_TYPE_F16
|
|
qlen = 30
|
|
layer_num = 10
|
|
CPUInfer = cpuinfer_ext.CPUInfer(48)
|
|
validation_iter = 100
|
|
|
|
def act_fn(x):
|
|
return x / (1.0 + torch.exp(-x))
|
|
|
|
def mlp_torch(input, gate_proj, up_proj, down_proj):
|
|
gate_buf = torch.mm(input, gate_proj.t())
|
|
up_buf = torch.mm(input, up_proj.t())
|
|
intermediate = act_fn(gate_buf) * up_buf
|
|
ret = torch.mm(intermediate, down_proj.t())
|
|
return ret
|
|
|
|
with torch.inference_mode(mode=True):
|
|
mlps = []
|
|
gate_projs = []
|
|
up_projs = []
|
|
down_projs = []
|
|
for _ in range(layer_num):
|
|
gate_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
up_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
down_proj = torch.randn((hidden_size, intermediate_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
|
|
mlp = cpuinfer_ext.mlp.MLP(config)
|
|
gate_projs.append(gate_proj)
|
|
up_projs.append(up_proj)
|
|
down_projs.append(down_proj)
|
|
mlps.append(mlp)
|
|
|
|
# validation
|
|
for i in range(validation_iter):
|
|
mlp = mlps[i % layer_num]
|
|
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
|
|
CPUInfer.submit(
|
|
mlp.forward(
|
|
qlen,
|
|
input.data_ptr(),
|
|
output.data_ptr()
|
|
)
|
|
)
|
|
CPUInfer.sync()
|
|
# print('cpuinfer output', output)
|
|
|
|
gate_proj = gate_projs[i%layer_num]
|
|
up_proj = up_projs[i%layer_num]
|
|
down_proj = down_projs[i%layer_num]
|
|
t_output = mlp_torch(input, gate_proj, up_proj, down_proj)
|
|
# print('torch output', t_output)
|
|
|
|
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
|
|
print('diff = ', diff)
|
|
assert(diff < 0.001)
|