kvcache-ai-ktransformers/csrc/ktransformers_ext/examples/test_linear.py
2025-03-31 22:45:37 +08:00

62 lines
1.8 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Description :
Author : chenht2022
Date : 2024-07-25 10:32:05
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-08-06 10:36:59
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
import time
sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
input_size = 16384
output_size = 5120
stride = 32
group_max_len = 1024
proj_type = 1 # ggml_type::GGML_TYPE_F16
hidden_type = 1 # ggml_type::GGML_TYPE_F16
qlen = 30
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(48)
validation_iter = 100
with torch.inference_mode(mode=True):
linears = []
projs = []
for _ in range(layer_num):
proj = torch.randn((output_size, input_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, group_max_len, proj.data_ptr(), proj_type, hidden_type)
linear = cpuinfer_ext.linear.Linear(config)
projs.append(proj)
linears.append(linear)
# validation
for i in range(validation_iter):
linear = linears[i % layer_num]
input = torch.randn((qlen, input_size), dtype=torch.float16).contiguous()
output = torch.empty((qlen, output_size), dtype=torch.float16).contiguous()
input = input / 100
CPUInfer.submit(
linear.forward(
qlen,
input.data_ptr(),
output.data_ptr()
)
)
CPUInfer.sync()
# print('cpuinfer output', output)
proj = projs[i%layer_num]
t_output = torch.mm(input, proj.t())
# print('torch output', t_output)
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
print('diff = ', diff)
assert(diff < 0.001)