mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 12:40:02 +00:00
65 lines
No EOL
2.4 KiB
Python
65 lines
No EOL
2.4 KiB
Python
'''
|
|
Date: 2024-11-08 02:46:07
|
|
LastEditors: djw
|
|
LastEditTime: 2024-11-08 02:46:41
|
|
'''
|
|
"""This file is used for /tests and /benchmarks"""
|
|
from typing import Dict, List
|
|
|
|
import numpy
|
|
import torch
|
|
|
|
|
|
# Precompute permutations for Marlin24 weight and scale shuffling # noqa: E501
|
|
#
|
|
# Marlin works on [16*2,64] tiles. The goal of the permutations is to reorder the weight data so that it is compatible noqa: # noqa: E501
|
|
# with the tensor-core format that is described here:
|
|
# https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type # noqa: E501
|
|
#
|
|
# As a result of this reordering, the vector loads inside the kernel will get the data as it is needed for tensor-core # noqa: E501
|
|
# (without the need to use ldmatrix instructions) # noqa: E501
|
|
def get_perms_24(num_bits: int):
|
|
perm_list: List[int] = []
|
|
for i in range(32):
|
|
perm1: List[int] = []
|
|
col = i // 4
|
|
col_o = col // 2
|
|
for block in [0, 1]:
|
|
for row in [
|
|
2 * (i % 4),
|
|
2 * (i % 4) + 1,
|
|
2 * (i % 4 + 4),
|
|
2 * (i % 4 + 4) + 1,
|
|
]:
|
|
perm1.append(16 * row + col_o * 256 + 8 * (col % 2) +
|
|
4 * block)
|
|
for j in range(4):
|
|
perm_list.extend([p + 1 * j for p in perm1])
|
|
perm = numpy.array(perm_list)
|
|
|
|
if num_bits == 4:
|
|
interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
|
|
elif num_bits == 8:
|
|
interleave = numpy.array([0, 2, 1, 3])
|
|
else:
|
|
raise ValueError("num_bits must be 4 or 8, got {}".format(num_bits))
|
|
|
|
perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel()
|
|
perm = torch.from_numpy(perm)
|
|
scale_perm: List[int] = []
|
|
for i in range(8):
|
|
scale_perm.extend([i * 8 + j for j in [0, 4, 1, 5, 2, 6, 3, 7]])
|
|
scale_perm_single: List[int] = []
|
|
for i in range(8):
|
|
scale_perm_single.extend([8 * i + j for j in [0, 1, 2, 3, 4, 5, 6, 7]])
|
|
return perm, scale_perm, scale_perm_single
|
|
|
|
|
|
marlin_24_perm: Dict[int, torch.Tensor] = {}
|
|
marlin_24_scale_perm: Dict[int, List[int]] = {}
|
|
marlin_24_scale_perm_single: Dict[int, List[int]] = {}
|
|
for num_bits in [4, 8]:
|
|
perm_24, scale_perm_24, scale_perm_single_24 = get_perms_24(num_bits)
|
|
marlin_24_perm[num_bits] = perm_24
|
|
marlin_24_scale_perm[num_bits] = scale_perm_24
|
|
marlin_24_scale_perm_single[num_bits] = scale_perm_single_24 |