mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 04:30:03 +00:00
440 lines
No EOL
15 KiB
Python
440 lines
No EOL
15 KiB
Python
"""
|
|
Description :
|
|
Author : Boxin Zhang
|
|
Version : 0.1.0
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
"""
|
|
|
|
from torch import nn
|
|
from transformers import ROPE_INIT_FUNCTIONS
|
|
from ktransformers.models.modeling_llama import (
|
|
LlamaRotaryEmbedding,
|
|
LlamaLinearScalingRotaryEmbedding,
|
|
LlamaDynamicNTKScalingRotaryEmbedding,
|
|
)
|
|
from ktransformers.models.modeling_deepseek_v3 import (
|
|
DeepseekV3RotaryEmbedding
|
|
)
|
|
from ktransformers.models.modeling_deepseek import (
|
|
DeepseekV2YarnRotaryEmbedding,
|
|
DeepseekV2RotaryEmbedding,
|
|
yarn_get_mscale,
|
|
yarn_linear_ramp_mask,
|
|
yarn_find_correction_range
|
|
)
|
|
from ktransformers.operators.base_operator import BaseInjectedModule
|
|
from ktransformers.util.custom_gguf import GGUFLoader
|
|
from ktransformers.util.utils import InferenceState
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
import torch
|
|
|
|
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe
|
|
class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim, orig_module.max_position_embeddings, orig_module.base
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.device,
|
|
)
|
|
|
|
|
|
class RotaryEmbeddingV3(BaseInjectedModule):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids):
|
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
# Force float32 since bfloat16 loses precision on long contexts
|
|
# See https://github.com/huggingface/transformers/pull/29285
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()
|
|
sin = emb.sin()
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
def load(self):
|
|
self._init(
|
|
dim=self.config.qk_rope_head_dim,
|
|
max_position_embeddings=self.config.max_position_embeddings,
|
|
base=self.config.rope_theta,
|
|
device=self.device,
|
|
)
|
|
def _init(self, dim, max_position_embeddings, base, device, scaling_factor=1.0):
|
|
self.scaling_factor = scaling_factor
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
|
# self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
# For BC we register cos and sin cached
|
|
self.max_seq_len_cached = max_position_embeddings
|
|
|
|
class RotaryEmbeddingV2(BaseInjectedModule, LlamaRotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base,
|
|
None,
|
|
orig_module.scaling_factor,
|
|
orig_module.rope_type,
|
|
orig_module.config,
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.device,
|
|
self.orig_module.scaling_factor,
|
|
self.orig_module.rope_type,
|
|
self.orig_module.config,
|
|
)
|
|
|
|
class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base,
|
|
None, # device
|
|
orig_module.scaling_factor,
|
|
orig_module.original_max_position_embeddings,
|
|
orig_module.beta_fast,
|
|
orig_module.beta_slow,
|
|
orig_module.mscale,
|
|
orig_module.mscale_all_dim,
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.generate_device,
|
|
self.orig_module.scaling_factor,
|
|
self.orig_module.original_max_position_embeddings,
|
|
self.orig_module.beta_fast,
|
|
self.orig_module.beta_slow,
|
|
self.orig_module.mscale,
|
|
self.orig_module.mscale_all_dim,
|
|
)
|
|
|
|
# class DeepSeekV3YarnRotaryEmbedding(BaseInjectedModule, DeepseekV3RotaryEmbedding):
|
|
# def __init__(
|
|
# self,
|
|
# key: str,
|
|
# gguf_loader: GGUFLoader,
|
|
# config: PretrainedConfig,
|
|
# orig_module: nn.Module,
|
|
# # device: str = "cuda",
|
|
# generate_device: str = "cuda",
|
|
# prefill_device: str = "cuda",
|
|
# **kwargs,
|
|
# ):
|
|
# BaseInjectedModule.__init__(
|
|
# self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
# )
|
|
# self.generate_device = generate_device
|
|
# self.prefill_device = prefill_device
|
|
|
|
# def load(self):
|
|
# # TODO support perlayer prefill
|
|
# self.orig_module.__init__(
|
|
# self.config,
|
|
# device=self.generate_device
|
|
# )
|
|
# return
|
|
|
|
class YarnRotaryEmbeddingV3(BaseInjectedModule):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
kwargs = {
|
|
key: self.config.rope_scaling[key]
|
|
for key in [
|
|
"original_max_position_embeddings",
|
|
"beta_fast",
|
|
"beta_slow",
|
|
"mscale",
|
|
"mscale_all_dim",
|
|
]
|
|
if key in self.config.rope_scaling
|
|
}
|
|
self._init(
|
|
dim=self.config.qk_rope_head_dim,
|
|
max_position_embeddings=self.config.max_position_embeddings,
|
|
base=self.config.rope_theta,
|
|
device=self.device,
|
|
scaling_factor=self.config.rope_scaling["factor"],
|
|
**kwargs,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids):
|
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
# Force float32 since bfloat16 loses precision on long contexts
|
|
# See https://github.com/huggingface/transformers/pull/29285
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()* self._mscale
|
|
sin = emb.sin()* self._mscale
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
def _init(
|
|
self,
|
|
dim,
|
|
max_position_embeddings=2048,
|
|
base=10000,
|
|
device=None,
|
|
scaling_factor=1.0,
|
|
original_max_position_embeddings=4096,
|
|
beta_fast=32,
|
|
beta_slow=1,
|
|
mscale=1,
|
|
mscale_all_dim=0,
|
|
):
|
|
self.original_max_position_embeddings = original_max_position_embeddings
|
|
self.beta_fast = beta_fast
|
|
self.beta_slow = beta_slow
|
|
self.mscale = mscale
|
|
self.mscale_all_dim = mscale_all_dim
|
|
self.scaling_factor = scaling_factor
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
|
|
freq_extra = 1.0 / (
|
|
self.base
|
|
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
|
)
|
|
freq_inter = 1.0 / (
|
|
self.scaling_factor
|
|
* self.base
|
|
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
|
)
|
|
|
|
low, high = yarn_find_correction_range(
|
|
self.beta_fast,
|
|
self.beta_slow,
|
|
dim,
|
|
self.base,
|
|
self.original_max_position_embeddings,
|
|
)
|
|
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
|
device=device, dtype=torch.float32
|
|
)
|
|
self.inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
|
self._mscale = float(
|
|
yarn_get_mscale(self.scaling_factor, self.mscale)
|
|
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
|
)
|
|
# For BC we register cos and sin cached
|
|
self.max_seq_len_cached = max_position_embeddings
|
|
|
|
class DynamicNTKScalingRotaryEmbedding(
|
|
BaseInjectedModule, LlamaDynamicNTKScalingRotaryEmbedding
|
|
):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
prefill_device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base,
|
|
None, # device
|
|
orig_module.scaling_factor,
|
|
orig_module.rope_type,
|
|
orig_module.config,
|
|
)
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.orig_module.device,
|
|
self.orig_module.scaling_factor,
|
|
self.orig_module.rope_type,
|
|
self.orig_module.config,
|
|
)
|
|
|
|
|
|
|
|
class RotaryEmbeddingV4(BaseInjectedModule):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids):
|
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
# Force float32 since bfloat16 loses precision on long contexts
|
|
# See https://github.com/huggingface/transformers/pull/29285
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()
|
|
sin = emb.sin()
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
def load(self):
|
|
self._init(
|
|
dim=self.config.qk_rope_head_dim,
|
|
max_position_embeddings=self.config.max_position_embeddings,
|
|
base=self.config.rope_theta,
|
|
device=self.device,
|
|
)
|
|
def _init(self, dim, max_position_embeddings, base, device, scaling_factor=1.0):
|
|
self.scaling_factor = scaling_factor
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
|
# self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
# For BC we register cos and sin cached
|
|
self.max_seq_len_cached = max_position_embeddings
|
|
|
|
class KQwen3MoeRotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
config,
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.config
|
|
) |