kvcache-ai-ktransformers/csrc/ktransformers_ext/operators/llamafile/moe.h
2025-07-25 17:22:20 +00:00

104 lines
No EOL
6.3 KiB
C++

/**
* @Description :
* @Author : chenht2022
* @Date : 2024-07-22 02:03:22
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:35:10
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#ifndef CPUINFER_OPERATOR_MOE_H
#define CPUINFER_OPERATOR_MOE_H
#include <cmath>
#include <cstdio>
#include <functional>
#include <mutex>
#include <vector>
#include "../../cpu_backend/backend.h"
#include "../../cpu_backend/shared_mem_buffer.h"
#include "conversion.h"
#include "llama.cpp/ggml-impl.h"
#include "llama.cpp/ggml-quants.h"
#include "llama.cpp/ggml.h"
#include "llamafile/sgemm.h"
struct MOEConfig {
int expert_num;
int routed_expert_num;
int hidden_size;
int intermediate_size;
int stride;
int group_min_len;
int group_max_len;
bool use_silu;
void* gate_proj;
void* up_proj;
void* down_proj;
ggml_type gate_type;
ggml_type up_type;
ggml_type down_type;
ggml_type hidden_type;
MOEConfig() {}
MOEConfig(int expert_num, int routed_expert_num, int hidden_size, int intermediate_size, int stride, int group_min_len, int group_max_len, bool use_silu, void* gate_proj, void* up_proj, void* down_proj, ggml_type gate_type, ggml_type up_type, ggml_type down_type, ggml_type hidden_type)
: expert_num(expert_num), routed_expert_num(routed_expert_num), hidden_size(hidden_size), intermediate_size(intermediate_size), stride(stride), group_min_len(group_min_len), group_max_len(group_max_len), use_silu(use_silu), gate_proj(gate_proj), up_proj(up_proj), down_proj(down_proj), gate_type(gate_type), up_type(up_type), down_type(down_type), hidden_type(hidden_type) {}
};
class MOE {
public:
MOE(MOEConfig);
~MOE();
void warm_up(Backend* backend);
void forward_one(int k, const uint64_t* expert_ids, const float* weights, const void* input, void* output, Backend* backend);
void forward_many(int qlen, int k, const uint64_t* expert_ids, const float* weights, const void* input, void* output, Backend* backend);
void forward(int qlen, int k, const uint64_t* expert_ids, const float* weights, const void* input, void* output, int* batch_size_tensor, Backend* backend);
private:
MOEConfig config_;
void* gate_proj_; // [expert_num * intermediate_size * hidden_size ( /32 if quantized)]
void* up_proj_; // [expert_num * intermediate_size * hidden_size ( /32 if quantized)]
void* down_proj_; // [expert_num * hidden_size * intermediate_size ( /32 if quantized)]
#ifdef USE_NUMA
std::vector<void*> gate_proj_numa_; // [numa_num, expert_num * intermediate_size * hidden_size ( /32 if quantized)]
std::vector<void*> up_proj_numa_; // [numa_num, expert_num * intermediate_size * hidden_size ( /32 if quantized)]
std::vector<void*> down_proj_numa_; // [numa_num, expert_num * hidden_size * intermediate_size ( /32 if quantized)]
#endif
float* s_input_fp32_; // [hidden_size]
uint8_t* s_gate_input_; // [hidden_size * ggml_type_size(ggml_internal_get_type_traits(gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(gate_type).vec_dot_type)]
uint8_t* s_up_input_; // [hidden_size * ggml_type_size(ggml_internal_get_type_traits(up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(up_type).vec_dot_type)]
std::vector<float*> s_gate_output_; // [routed_expert_num, intermediate_size]
std::vector<float*> s_up_output_; // [routed_expert_num, intermediate_size]
std::vector<float*> s_intermediate_fp32_; // [routed_expert_num, intermediate_size]
std::vector<uint8_t*> s_down_input_; // [routed_expert_num, intermediate_size * ggml_type_size(ggml_internal_get_type_traits(down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(down_type).vec_dot_type)]
std::vector<float*> s_down_output_; // [routed_expert_num, hidden_size]
float* s_output_fp32_; // [hidden_size]
std::vector<float*> m_input_fp32_; // [group_max_len, hidden_size]
std::vector<uint8_t*> m_gate_input_; // [group_max_len, hidden_size * ggml_type_size(ggml_internal_get_type_traits(gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(gate_type).vec_dot_type)]
std::vector<uint8_t*> m_up_input_; // [group_max_len, hidden_size * ggml_type_size(ggml_internal_get_type_traits(up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(up_type).vec_dot_type)]
uint8_t* m_local_gate_input_; // [routed_expert_num * group_max_len * hidden_size * ggml_type_size(ggml_internal_get_type_traits(gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(gate_type).vec_dot_type)]
uint8_t* m_local_up_input_; // [routed_expert_num * group_max_len * hidden_size * ggml_type_size(ggml_internal_get_type_traits(up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(up_type).vec_dot_type)]
float* m_local_gate_output_; // [routed_expert_num * group_max_len * intermediate_size]
float* m_local_up_output_; // [routed_expert_num * group_max_len * intermediate_size]
float* m_local_intermediate_fp32_; // [routed_expert_num * group_max_len * intermediate_size]
uint8_t* m_local_down_input_; // [routed_expert_num * group_max_len * intermediate_size * ggml_type_size(ggml_internal_get_type_traits(down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(down_type).vec_dot_type)]
float* m_local_down_output_; // [routed_expert_num * group_max_len * hidden_size]
std::vector<float*> m_output_fp32_; // [group_max_len, hidden_size]
std::vector<std::vector<int>> m_local_pos_; // [group_max_len, routed_expert_num]
std::vector<int> m_local_num_; // [expert_num]
std::vector<uint8_t*> m_local_gate_input_ptr_; // [expert_num]
std::vector<uint8_t*> m_local_up_input_ptr_; // [expert_num]
std::vector<float*> m_local_gate_output_ptr_; // [expert_num]
std::vector<float*> m_local_up_output_ptr_; // [expert_num]
std::vector<float*> m_local_intermediate_fp32_ptr_; // [expert_num]
std::vector<uint8_t*> m_local_down_input_ptr_; // [expert_num]
std::vector<float*> m_local_down_output_ptr_; // [expert_num]
};
#endif