mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
155 lines
6.2 KiB
Python
155 lines
6.2 KiB
Python
import argparse
|
||
import random
|
||
import time
|
||
import json
|
||
import requests
|
||
import pandas as pd
|
||
from datasets import load_dataset
|
||
import os
|
||
import concurrent.futures
|
||
import threading
|
||
|
||
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
||
os.environ['https_proxy'] = ''
|
||
os.environ['http_proxy'] = ''
|
||
hint = 'There is a single choice question. Answer the question by replying A, B, C, D. No other answers are accepted. Just the letter.'
|
||
|
||
class DataEvaluator:
|
||
def __init__(self):
|
||
self.data = []
|
||
|
||
def load_data(self, file_path):
|
||
"""
|
||
从数据文件中加载数据,每条记录对应一个实例
|
||
"""
|
||
ds = load_dataset(file_path, "all")
|
||
df = pd.DataFrame(ds['test'])
|
||
for _, row in df.iterrows():
|
||
self.data.append(row.to_dict())
|
||
|
||
def get_prompt(self, record):
|
||
"""
|
||
结合提示信息和记录数据生成完整的题目
|
||
"""
|
||
options_str = "\n".join([f"{chr(65 + i)}. {opt}" for i, opt in enumerate(record['choices'])])
|
||
prompt = hint + "\nQuestion: " + record['question'] + "\n" + options_str + "\nAnswer: '"
|
||
return prompt
|
||
|
||
def post_processing(self, text):
|
||
"""
|
||
对生成的文本进行后处理,提取最终答案(只返回最后一个字符)
|
||
"""
|
||
text = text.lstrip('\n').split('\n')[-1]
|
||
return text[-1:]
|
||
|
||
def score(self, pred, answer):
|
||
"""
|
||
对比预测答案和正确答案,返回得分
|
||
"""
|
||
if pred == answer:
|
||
return 1
|
||
return 0
|
||
|
||
def generate_text(api_url, question, model_name, stream=False):
|
||
headers = {
|
||
'accept': 'application/json',
|
||
'Content-Type': 'application/json',
|
||
'Authorization': 'Bearer ' # 如有需要,请填入 API Key
|
||
}
|
||
data = {
|
||
"messages": [{"content": question, "role": "user"}],
|
||
"model": model_name,
|
||
"stream": stream,
|
||
}
|
||
print("POST data:", data)
|
||
response = requests.post(api_url, headers=headers, json=data, timeout=5000000)
|
||
if response.status_code == 200:
|
||
result = response.json()
|
||
return result.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
|
||
else:
|
||
print(f"API Request failed with status code {response.status_code}")
|
||
return None
|
||
|
||
def main(concurrent_requests, data_evaluator: DataEvaluator, result_file, log_file, api_url, model_name):
|
||
start_total_time = time.time()
|
||
total_score = 0
|
||
results = []
|
||
file_lock = threading.Lock()
|
||
|
||
# 打乱数据顺序,并选择需要测试的实例数
|
||
random.seed(42)
|
||
random.shuffle(data_evaluator.data)
|
||
data_subset = data_evaluator.data[:min(concurrent_requests, len(data_evaluator.data))]
|
||
|
||
batch_size = 10 # 每批次最多 10 个实例
|
||
|
||
def worker(index, data_item):
|
||
nonlocal total_score
|
||
question = data_evaluator.get_prompt(data_item)
|
||
start_time = time.time()
|
||
try:
|
||
prediction = generate_text(api_url, question, model_name)
|
||
if prediction is None:
|
||
raise Exception(f"Failed to get prediction for question: {question}")
|
||
# 正确答案:将数字转换成字母(0->A, 1->B, 2->C, 3->D)
|
||
answer = chr(data_item['answer'] + 65)
|
||
processed_prediction = data_evaluator.post_processing(prediction)
|
||
score = data_evaluator.score(processed_prediction, answer)
|
||
elapsed_time = time.time() - start_time
|
||
result_data = {
|
||
"question_id": index,
|
||
"answer": answer,
|
||
"prediction": processed_prediction,
|
||
"real_prediction": prediction,
|
||
"score": score,
|
||
"time": elapsed_time
|
||
}
|
||
# 写入结果时加锁保证线程安全
|
||
with file_lock:
|
||
with open(result_file, 'a', encoding='utf-8') as f:
|
||
json.dump(result_data, f, ensure_ascii=False, indent=4)
|
||
f.write("\n")
|
||
return result_data
|
||
except Exception as e:
|
||
print(f"Error processing request {index}: {e}")
|
||
return None
|
||
|
||
# 按批次处理,每批最多 10 个任务
|
||
for batch_start in range(0, len(data_subset), batch_size):
|
||
batch = data_subset[batch_start: batch_start + batch_size]
|
||
with concurrent.futures.ThreadPoolExecutor(max_workers=batch_size) as executor:
|
||
futures = [executor.submit(worker, batch_start + j, data_item) for j, data_item in enumerate(batch)]
|
||
for future in concurrent.futures.as_completed(futures):
|
||
res = future.result()
|
||
if res is not None:
|
||
results.append(res)
|
||
total_score += res['score']
|
||
|
||
total_time = time.time() - start_total_time
|
||
throughput = len(data_subset) / total_time if total_time > 0 else 0
|
||
|
||
with open(log_file, 'a', encoding='utf-8') as log_f:
|
||
log_f.write(f"Total Time: {total_time:.2f} seconds\n")
|
||
log_f.write(f"Throughput: {throughput:.2f} requests per second\n")
|
||
average_score = total_score / len(data_subset) if data_subset else 0
|
||
log_f.write(f"Average Score: {average_score}\n")
|
||
log_f.write('-' * 40 + '\n')
|
||
|
||
print(f"Results saved to {result_file}")
|
||
print(f"Log saved to {log_file}")
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="API Generate Tester")
|
||
parser.add_argument("--concurrent", type=int, default=1000, help="需要测试的实例总数")
|
||
parser.add_argument("--file", type=str, default="cais/mmlu", help="数据文件路径")
|
||
parser.add_argument("--result", type=str, default="./mmlu_result_silicon.json", help="结果文件保存路径")
|
||
parser.add_argument("--log", type=str, default="./mmlu_result_silicon.log", help="日志文件保存路径")
|
||
parser.add_argument("--model", type=str, default="Pro/deepseek-ai/DeepSeek-V3", help="模型名称或路径")
|
||
parser.add_argument("--api_url", type=str, default="http://localhost:10006/v1/chat/completions", help="API URL")
|
||
|
||
args = parser.parse_args()
|
||
|
||
data_evaluator = DataEvaluator()
|
||
data_evaluator.load_data(args.file)
|
||
|
||
main(args.concurrent, data_evaluator, args.result, args.log, args.api_url, args.model)
|