mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
152 lines
No EOL
6.8 KiB
Python
152 lines
No EOL
6.8 KiB
Python
import math
|
|
from dataclasses import dataclass
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
import math
|
|
from typing import List, Optional, Tuple, Union
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from ktransformers.server.balance_serve.inference.forward_batch import ForwardBatchInput, ForwardBatchOutput
|
|
from ktransformers.models.custom_cache import KDeepSeekV3Cache
|
|
from ktransformers.models.modeling_deepseek import DeepseekV2Model, DeepseekV2PreTrainedModel
|
|
from ktransformers.models.configuration_deepseek import DeepseekV2Config
|
|
|
|
|
|
torch.set_grad_enabled(False)
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
import flashinfer
|
|
|
|
class KDeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
|
|
kv_cache: KDeepSeekV3Cache
|
|
use_cuda_graph = False
|
|
def __init__(
|
|
self,
|
|
config,
|
|
kv_cache,
|
|
|
|
):
|
|
super().__init__(config)
|
|
self.model = DeepseekV2Model(config)
|
|
self.config = config
|
|
self.kv_cache = kv_cache
|
|
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
def init_wrapper(self, use_cuda_graph, device, max_batch_size, max_pages):
|
|
self.use_cuda_graph = use_cuda_graph
|
|
self.workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8).to(0)
|
|
self.qo_indptr_buf = torch.empty((max_batch_size+1,), dtype=torch.int32, device=device)
|
|
self.paged_kv_indptr_buf = torch.empty((max_batch_size+1,), dtype=torch.int32, device=device)
|
|
self.paged_kv_indices_buf = torch.empty((max_pages,), dtype=torch.int32, device=device)
|
|
self.paged_kv_len_buf = torch.empty((max_batch_size,), dtype=torch.int32, device=device)
|
|
|
|
|
|
|
|
self.wrapper = flashinfer.mla.BatchMLAPagedAttentionWrapper(
|
|
self.workspace_buffer, use_cuda_graph=use_cuda_graph,
|
|
qo_indptr=self.qo_indptr_buf,kv_indptr=self.paged_kv_indptr_buf,
|
|
kv_indices=self.paged_kv_indices_buf,kv_len_arr=self.paged_kv_len_buf
|
|
)
|
|
|
|
def batch_embeddings(self, batch: ForwardBatchInput, device="cuda:0"):
|
|
features = []
|
|
for i in range(batch.batch_size):
|
|
tokens = batch.minibatch.tokens.contiguous()
|
|
feature = (
|
|
self.model.embed_tokens(tokens.to(torch.device('cpu')))
|
|
.to(torch.bfloat16)
|
|
.to(device=device)
|
|
)
|
|
features.append(feature)
|
|
|
|
return features
|
|
|
|
|
|
def forward(
|
|
self,
|
|
batch: ForwardBatchInput | None = None,
|
|
features: List[torch.Tensor] | None = None,
|
|
bsz_tensors: torch.Tensor | None = None,
|
|
num_tokens_tensors: torch.Tensor | None = None,
|
|
page_idx: torch.Tensor | None = None,
|
|
page_offset: torch.Tensor | None = None,
|
|
) -> ForwardBatchOutput:
|
|
current_stream = torch.cuda.current_stream()
|
|
|
|
forward_batch_output = ForwardBatchOutput()
|
|
|
|
|
|
hidden_states = features[0]
|
|
|
|
|
|
with torch.cuda.stream(current_stream):
|
|
residual = torch.zeros_like(hidden_states)
|
|
for i, decode_layer in enumerate(self.model.layers):
|
|
if self.model.transfer_map is not None and i in self.model.transfer_map:
|
|
prev_stream = torch.cuda.current_stream()
|
|
cur_device = self.model.transfer_map[i]
|
|
if cur_device not in self.model.stream_device_map:
|
|
self.model.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
|
|
torch.cuda.set_device(cur_device)
|
|
self.model.stream_device_map[cur_device].wait_stream(prev_stream)
|
|
torch.cuda.set_stream(self.model.stream_device_map[cur_device])
|
|
hidden_states = hidden_states.to(
|
|
self.model.transfer_map[i], non_blocking=True
|
|
)
|
|
|
|
batch.minibatch.position_ids = (
|
|
batch.minibatch.position_ids.to(self.model.transfer_map[i], non_blocking=True)
|
|
if batch.minibatch.position_ids is not None
|
|
else None
|
|
)
|
|
hidden_states, residual = decode_layer.input_layernorm(hidden_states, num_tokens_tensors, residual)
|
|
hidden_states = decode_layer.self_attn(hidden_states, self.kv_cache,
|
|
position_ids=batch.minibatch.position_ids,
|
|
wrapper=self.wrapper, bsz_tensors=num_tokens_tensors,
|
|
cache_position=batch.minibatch.positions,
|
|
batch_indices=batch.minibatch.batch_indices,
|
|
kv_indices=batch.minibatch.kv_indices,
|
|
kv_indptr=batch.minibatch.kv_indptr,
|
|
kv_last_page_len=batch.minibatch.kv_last_page_len,
|
|
q_indptr=batch.minibatch.q_indptr,
|
|
page_idx=page_idx,
|
|
page_offset=page_offset
|
|
)
|
|
|
|
hidden_states, residual = decode_layer.post_attention_layernorm(hidden_states, num_tokens_tensors, residual)
|
|
if i < 3:
|
|
hidden_states = decode_layer.mlp(hidden_states, num_tokens_tensors)
|
|
else:
|
|
hidden_states = decode_layer.mlp(hidden_states.unsqueeze(0), num_tokens_tensors)
|
|
hidden_states = hidden_states.squeeze(0)
|
|
forward_batch_output = ForwardBatchOutput()
|
|
assert batch.batch_size == 1
|
|
with torch.cuda.stream(current_stream):
|
|
|
|
local_logit = self.lm_head(self.model.norm(hidden_states[batch.minibatch.logits_start], num_tokens_tensors, residual[batch.minibatch.logits_start])[0])
|
|
# local_logit = local_logit[batch.minibatch.logits_start]
|
|
forward_batch_output.logits.append(local_logit)
|
|
|
|
return forward_batch_output
|
|
|
|
|
|
|
|
def flash_infer_attn_plan(self, batch: ForwardBatchInput, bsz_tensors, num_tokens_tensors,
|
|
num_heads: int,
|
|
head_dim_ckv: int,
|
|
head_dim_kpe: int,
|
|
page_size: int,
|
|
causal: bool,
|
|
sm_scale: float,
|
|
q_data_type: torch.dtype,
|
|
kv_data_type: torch.dtype,):
|
|
minibatch = batch.minibatch
|
|
|
|
self.wrapper.plan(minibatch.q_indptr, minibatch.kv_indptr, minibatch.kv_indices,
|
|
minibatch.kv_len, num_heads, head_dim_ckv, head_dim_kpe, page_size, causal, sm_scale, q_data_type, kv_data_type)
|
|
|