kvcache-ai-ktransformers/csrc/balance_serve/kvc2/test/pytest_load.py
2025-03-31 22:55:32 +08:00

61 lines
1.8 KiB
Python

import sys
sys.path.append('./build')
sys.path.append('./src')
import torch
import kvc2_ext
from kvc2_utils import get_tensor_from_data_ptr
# Create a kvc2 instance
path = "/mnt/data/kvc2"
kvc2_instance = kvc2_ext.create_kvc2(path,int(10e9)) # 10 G memory pool
kvc2_ext.load(kvc2_instance)
# Start IO thread
print("Start IO thread")
kvc2_ext.start_io_thread(kvc2_instance)
print("IO thread started")
# Create CacheInfoInput
test_info = kvc2_ext.CacheInfoInput()
test_info.model_type = kvc2_ext.ModelType.MT_DeepseekV2
test_info.cache_type = kvc2_ext.CacheType.CT_KeyCache
test_info.quant_type = kvc2_ext.QuantType.QT_F32
print("Element size: ", test_info.element_size())
# Generate random test IDs (length = 2560)
torch.manual_seed(123)
length = 2560
test_id = torch.randint(0, 65536, (length,), dtype=torch.uint16).contiguous()
block_count = (length+255) // 256
# print("Test ID: ", test_id)
# Generate test data based on element size and hidden layer count
element_size = test_info.element_size()
hidden_layer_count = test_info.hidden_layer_count()
def read_cmp_and_release(kvc2_instance,cache_info,ids,length):
handle = kvc2_ext.lookup(kvc2_instance, cache_info, ids, length)
if kvc2_ext.is_nullptr(handle):
print("Handle is nullptr.")
exit()
matched_length = kvc2_ext.matched_length(handle)
matched_data = kvc2_ext.handle_data(handle)
print('Matched length: ', matched_length)
if matched_length >0:
print(f'First layer address {[hex(x) for x in matched_data[0]]}')
read_data = get_tensor_from_data_ptr(matched_data,element_size)
print("Just read check ok.")
kvc2_ext.release(handle)
l = 128
while l<=length:
read_cmp_and_release(kvc2_instance,test_info,test_id.data_ptr(),l)
l+=128
kvc2_ext.destroy_kvc2(kvc2_instance)
print("Test completed successfully.")