kvcache-ai-ktransformers/ktransformers/ktransformers_ext/examples/test_attention.py
2024-08-28 16:11:43 +00:00

142 lines
3.9 KiB
Python

#!/usr/bin/env python
# coding=utf-8
"""
Description :
Author : Jianwei Dong
Date : 2024-08-28 10:32:05
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-08-28 10:32:05
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
"""
import os, sys
import time
sys.path.append(os.path.dirname(__file__) + "/../build")
import cpuinfer_ext
from flash_attn import flash_attn_with_kvcache
import torch
layer_num = 10
kv_head_num = 8
q_head_num = 32
head_dim = 128
block_len = 128
anchor_num = 1
cache_seqlen = 8192
cache_seqlens = torch.tensor([cache_seqlen], dtype=torch.int32, device="cpu")
seqlens_zero = torch.zeros((1,), dtype=torch.int32, device="cpu")
anchor_type = cpuinfer_ext.kvcache.AnchorType.DYNAMIC
kv_type = cpuinfer_ext.kvcache.ggml_type.FP16
retrieval_type = cpuinfer_ext.kvcache.RetrievalType.LAYER
layer_step: int = 1
token_step: int = 1
layer_offset: int = 0
max_thread_num: int = 2
max_batch_size: int = 1
max_block_num: int = 512
CPUInfer = cpuinfer_ext.CPUInfer(max_thread_num)
validation_iter = 100
with torch.inference_mode(mode=True):
config = cpuinfer_ext.kvcache.KVCacheConfig(
layer_num,
kv_head_num,
q_head_num,
head_dim,
block_len,
anchor_num,
anchor_type,
kv_type,
retrieval_type,
layer_step,
token_step,
layer_offset,
max_block_num,
max_batch_size,
max_thread_num,
)
local_kvcache = cpuinfer_ext.kvcache.KVCache(config)
kvcaches = []
block_table = (
torch.arange(max_block_num, dtype=torch.int32, device="cpu")
.contiguous()
.view(1, -1)
)
for layer_idx in range(layer_num):
k_cache = torch.randn(
(1, cache_seqlen, kv_head_num, head_dim), dtype=torch.float16, device="cpu"
).contiguous()
v_cache = torch.randn(
(1, cache_seqlen, kv_head_num, head_dim), dtype=torch.float16, device="cpu"
).contiguous()
CPUInfer.submit(
local_kvcache.update_kvcache_fp16(
k_cache.data_ptr(),
v_cache.data_ptr(),
layer_idx,
block_table.data_ptr(),
1,
max_block_num,
seqlens_zero.data_ptr(),
cache_seqlen,
)
)
CPUInfer.sync()
kvcaches.append((k_cache.to("cuda"), v_cache.to("cuda")))
# validation
for i in range(validation_iter):
k_cache = kvcaches[i % layer_num][0]
v_cache = kvcaches[i % layer_num][1]
input = torch.randn(
(1, 1, q_head_num, head_dim), dtype=torch.float16, device="cpu"
).contiguous()
output = torch.empty(
(1, 1, q_head_num, head_dim), dtype=torch.float16, device="cpu"
).contiguous()
# attn_lse: (bsz, q_len, q_head_num)
attn_lse = torch.empty(
(1, 1, q_head_num), dtype=torch.float32, device="cpu"
).contiguous()
input = input / 100
CPUInfer.submit(
local_kvcache.attn(
input.data_ptr(),
output.data_ptr(),
attn_lse.data_ptr(),
i % layer_num,
0,
1,
1,
max_block_num,
block_table.data_ptr(),
cache_seqlens.data_ptr(),
-1,
-1,
-1,
)
)
CPUInfer.sync()
# print("cpuinfer output", output)
t_output = flash_attn_with_kvcache(
q=input.to("cuda"),
k_cache=k_cache,
v_cache=v_cache,
cache_seqlens=cache_seqlens.to("cuda"),
)
# print("torch output", t_output)
diff = torch.mean(torch.abs(output.to("cuda") - t_output)) / torch.mean(
torch.abs(t_output)
)
print("diff = ", diff)
assert diff < 0.001