kvcache-ai-ktransformers/third_party/llamafile/tinyblas_cpu.h
2024-07-27 16:06:58 +08:00

1054 lines
32 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Adapted from
// https://github.com/Mozilla-Ocho/llamafile/blob/0.8.8/llamafile/tinyblas_cpu.h
// Copyrigth 2024 Mozilla Foundation.
// Copyright(c) 2024 by KVCache.AI, All Rights Reserved.
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi
//
// Copyright 2024 Mozilla Foundation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// ██████╗ ██╗ █████╗ ██████╗
// ██████╗██╗██╗ ██╗██═██╗██╔══██╗██║ ██╔══██╗██╔═══╝
// ╚═██╔═╝██║███▄██║██ ██║██████╔╝██║ ███████║██████╗
// ██║ ██║██▀███║╚███╔╝██╔══██╗██║ ██╔══██║╔═══██║
// ██║ ██║██║ ██║ ███║ ██████╔╝████╗██║ ██║██████║
// ╚═╝ ╚═╝╚═╝ ╚═╝ ╚══╝ ╚═════╝ ╚═══╝╚═╝ ╚═╝╚═════╝
//
// BASIC LINEAR ALGEBRA SUBPROGRAMS
//
//
// This file implements multithreaded CPU matrix multiplication for the
// common contiguous use case C = Aᵀ * B. These kernels are designed to
// have excellent performance[1] for matrices that fit in the CPU cache
// without imposing any overhead such as cache filling or malloc calls.
//
// This implementation does not guarantee any upper bound with rounding
// errors, which grow along with k. Our goal's to maximally exploit the
// hardware for performance, and then use whatever resources remain for
// improving numerical accuracy.
//
// [1] J. Tunney, LLaMA Now Goes Faster on CPUs, Mar. 2024. [Online].
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
#pragma once
#include "llama.cpp/ggml-impl.h"
#include "llama.cpp/ggml-quants.h"
// #include "log.h"
#include "flags.h"
#include "sgemm.h"
// #include <cosmo.h>
#pragma GCC diagnostic ignored "-Wpedantic"
#pragma GCC diagnostic ignored "-Wignored-attributes"
#define ROW_ALIGN 64
#define MATRIX_ALIGN 4096
#define MAX_ALIGN 4096
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
#else
#define NOINLINE __attribute__((__noinline__))
#endif
#if defined(__ARM_NEON) || defined(__AVX512F__)
#define VECTOR_REGISTERS 32
#else
#define VECTOR_REGISTERS 16
#endif
#if 0
#define NOT_SUPPORTED tinyBLAS_not_supported(__FILE__, __LINE__)
#else
#define NOT_SUPPORTED false
#endif
#define WANT_QUANTIZATION false
namespace {
bool tinyBLAS_not_supported(const char* file, int line) {
// tinylogf("%s:%d: tinyBLAS not supported\n", file, line);
return false;
}
inline float unhalf(ggml_fp16_t d) {
return GGML_FP16_TO_FP32(d);
}
inline float unhalf(ggml_bf16_t d) {
return GGML_BF16_TO_FP32(d);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// MATRIX MEMORY INDEXING
#define NCA 1
#define NCB 2
#define NCC 4
#define INDEX(A, lda, j, i) (CONFIG & NC##A ? ((T##A**)A)[j] + i : A + lda * (j) + i)
////////////////////////////////////////////////////////////////////////////////////////////////////
// GGML TYPE TRAITS
template <typename T>
struct ggml_type_trait;
template <>
struct ggml_type_trait<float> {
static constexpr ggml_type id = GGML_TYPE_F32;
};
template <>
struct ggml_type_trait<ggml_bf16_t> {
static constexpr ggml_type id = GGML_TYPE_BF16;
};
template <>
struct ggml_type_trait<ggml_fp16_t> {
static constexpr ggml_type id = GGML_TYPE_F16;
};
template <>
struct ggml_type_trait<block_q8_0> {
static constexpr ggml_type id = GGML_TYPE_Q8_0;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED ARITHMETIC OPERATIONS
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m128 add(__m128 x, __m128 y) {
return _mm_add_ps(x, y);
}
inline __m128 sub(__m128 x, __m128 y) {
return _mm_sub_ps(x, y);
}
inline __m128 mul(__m128 x, __m128 y) {
return _mm_mul_ps(x, y);
}
#endif // __SSE__
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m256 add(__m256 x, __m256 y) {
return _mm256_add_ps(x, y);
}
inline __m256 sub(__m256 x, __m256 y) {
return _mm256_sub_ps(x, y);
}
inline __m256 mul(__m256 x, __m256 y) {
return _mm256_mul_ps(x, y);
}
#endif // __AVX__
#if defined(__AVX512F__)
inline __m512 add(__m512 x, __m512 y) {
return _mm512_add_ps(x, y);
}
inline __m512 sub(__m512 x, __m512 y) {
return _mm512_sub_ps(x, y);
}
inline __m512 mul(__m512 x, __m512 y) {
return _mm512_mul_ps(x, y);
}
#endif // __AVX512F__
#if defined(__ARM_NEON)
inline float32x4_t add(float32x4_t x, float32x4_t y) {
return vaddq_f32(x, y);
}
inline float32x4_t sub(float32x4_t x, float32x4_t y) {
return vsubq_f32(x, y);
}
inline float32x4_t mul(float32x4_t x, float32x4_t y) {
return vmulq_f32(x, y);
}
#endif // __ARM_NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
inline float16x8_t add(float16x8_t x, float16x8_t y) {
return vaddq_f16(x, y);
}
inline float16x8_t sub(float16x8_t x, float16x8_t y) {
return vsubq_f16(x, y);
}
inline float16x8_t mul(float16x8_t x, float16x8_t y) {
return vmulq_f16(x, y);
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED FUSED MULTIPLY ADD
/**
* Computes a * b + c.
*/
template <typename T, typename U>
inline U madd(T a, T b, U c) {
return add(mul(a, b), c);
}
/**
* Computes a * b + c with error correction.
*
* @see W. Kahan, "Further remarks on reducing truncation errors,"
* Communications of the ACM, vol. 8, no. 1, p. 40, Jan. 1965,
* doi: 10.1145/363707.363723.
*/
template <typename T, typename U>
inline U madder(T a, T b, U c, U* e) {
U y = sub(mul(a, b), *e);
U t = add(c, y);
*e = sub(sub(t, c), y);
return t;
}
#ifdef __ARM_NEON
inline float32x4_t badder(float32x4_t a, float b, float32x4_t c, float32x4_t* e) {
float32x4_t y = sub(vmulq_n_f32(a, b), *e);
float32x4_t t = add(c, y);
*e = sub(sub(t, c), y);
return t;
}
#endif
#if defined(__FMA__)
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m256 madd(__m256 a, __m256 b, __m256 c) {
return _mm256_fmadd_ps(a, b, c);
}
#endif
#if defined(__AVX512F__)
template <>
inline __m512 madd(__m512 a, __m512 b, __m512 c) {
return _mm512_fmadd_ps(a, b, c);
}
#endif
#endif
#if defined(__ARM_FEATURE_FMA)
template <>
inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
return vfmaq_f32(c, a, b);
}
#if 0 // todo: this specialization chops gcc 12.3 performance in half
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) && 0
template <>
inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
return vfmaq_f16(c, b, a);
}
#endif
#endif
#endif
#if defined(__AVX512BF16__)
template <>
inline __m512 madd(__m512bh x, __m512bh y, __m512 z) {
return _mm512_dpbf16_ps(z, x, y);
}
template <>
inline __m512 madder(__m512bh x, __m512bh y, __m512 z, __m512* _) {
return _mm512_dpbf16_ps(z, x, y);
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED HORIZONTAL SUM
#if defined(__ARM_NEON)
inline float hsum(float32x4_t x) {
return vaddvq_f32(x);
}
#endif // __ARM_NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
inline float hsum(float16x8_t x) {
// todo: this works great on clang but it produces terrible code on gcc 12.3
return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)), vcvt_f32_f16(vget_high_f16(x))));
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m128 x) {
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
x = _mm_add_ss(x, _mm_movehdup_ps(x));
#else
__m128 t;
t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
x = _mm_add_ps(x, t);
t = _mm_movehl_ps(t, x);
x = _mm_add_ss(x, t);
#endif
return _mm_cvtss_f32(x);
}
#endif
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m256 x) {
return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1), _mm256_castps256_ps128(x)));
}
#endif // __AVX__
#if defined(__AVX512F__)
inline float hsum(__m512 x) {
return _mm512_reduce_add_ps(x);
}
#endif // __AVX512F__
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED MEMORY LOADING
template <typename T, typename U>
T load(const U*);
template <>
inline float load(const float* p) {
return *p;
}
template <>
inline float load(const ggml_fp16_t* p) {
return unhalf(*p);
}
template <>
inline float load(const ggml_bf16_t* p) {
return unhalf(*p);
}
#if defined(__ARM_NEON)
template <>
inline float32x4_t load(const float* p) {
return vld1q_f32(p);
}
template <>
inline float32x4_t load(const ggml_bf16_t* p) {
return vreinterpretq_f32_u32(vshll_n_u16(vld1_u16((const unsigned short*)p), 16));
}
#if !defined(_MSC_VER)
template <>
inline float16x8_t load(const ggml_fp16_t* p) {
return vld1q_f16((const float16_t*)p);
}
template <>
inline float32x4_t load(const ggml_fp16_t* p) {
return vcvt_f32_f16(vld1_f16((const float16_t*)p));
}
#endif // _MSC_VER
#endif // __ARM_NEON
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m128 load(const float* p) {
return _mm_loadu_ps(p);
}
#endif // __SSE__
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m256 load(const float* p) {
return _mm256_loadu_ps(p);
}
#endif // __AVX__
#if defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m256 load(const ggml_bf16_t* p) {
return _mm256_castsi256_ps(
_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i*)p)), 16));
}
#endif // __AVX2__
#if defined(__F16C__)
template <>
inline __m256 load(const ggml_fp16_t* p) {
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)p));
}
#endif // __F16C__
#if defined(__AVX512F__)
template <>
inline __m512 load(const float* p) {
return _mm512_loadu_ps(p);
}
template <>
inline __m512 load(const ggml_fp16_t* p) {
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i*)p));
}
template <>
inline __m512 load(const ggml_bf16_t* p) {
return _mm512_castsi512_ps(
_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i*)p)), 16));
}
#endif // __AVX512F__
#if defined(__AVX512BF16__)
template <>
inline __m512bh load(const ggml_bf16_t* p) {
return (__m512bh)_mm512_loadu_ps((const float*)p);
}
template <>
inline __m512bh load(const float* p) {
return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p));
}
#endif // __AVX512BF16__
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT OUTPUT STREAMING
inline void store(float* p, float f) {
*p = f;
}
inline void store(ggml_fp16_t* p, float f) {
*p = GGML_FP32_TO_FP16(f);
}
inline void store(ggml_bf16_t* p, float f) {
*p = GGML_FP32_TO_BF16(f);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
template <int CONFIG, int KN, typename D, typename V, typename TA, typename TB, typename TC>
class tinyBLAS {
public:
tinyBLAS(long k, const TA* A, long lda, const TB* B, long ldb, TC* C, long ldc, int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(long m, long n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(long m0, long m, long n0, long n) {
long mc, nc, mp, np;
#if VECTOR_REGISTERS == 32
if (!FLAG_precise) {
switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
case 0x55:
mc = 5;
nc = 5;
gemm<5, 5, false>(m0, m, n0, n);
break;
case 0x54:
case 0x53:
case 0x52:
case 0x45:
case 0x44:
case 0x43:
case 0x42:
case 0x35:
case 0x34:
case 0x33:
case 0x32:
case 0x25:
case 0x24:
case 0x23:
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, false>(m0, m, n0, n);
break;
case 0x51:
case 0x41:
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, false>(m0, m, n0, n);
break;
case 0x15:
case 0x14:
case 0x13:
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, false>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, false>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 3)) {
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3, true>(m0, m, n0, n);
break;
case 0x42:
case 0x33:
case 0x32:
case 0x23:
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, true>(m0, m, n0, n);
break;
case 0x41:
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, true>(m0, m, n0, n);
break;
case 0x13:
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, true>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, true>(m0, m, n0, n);
break;
default:
return;
}
}
#endif
#if VECTOR_REGISTERS == 16
if (!FLAG_precise) {
switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 3)) {
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3, false>(m0, m, n0, n);
break;
case 0x42:
case 0x33:
case 0x32:
case 0x23:
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, false>(m0, m, n0, n);
break;
case 0x41:
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, false>(m0, m, n0, n);
break;
case 0x13:
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, false>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, false>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 2)) {
case 0x32:
mc = 3;
nc = 2;
gemm<3, 2, true>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm<2, 3, true>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, true>(m0, m, n0, n);
break;
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, true>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, true>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, true>(m0, m, n0, n);
break;
default:
return;
}
}
#endif
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
template <int RM, int RN, int PRECISE>
NOINLINE void gemm(long m0, long m, long n0, long n) {
long ytiles = RM > 1 ? (m - m0) / RM : 1;
long xtiles = RN > 1 ? (n - n0) / RN : 1;
long tiles = xtiles * ytiles;
long duty = (tiles + nth - 1) / nth;
long start = duty * ith;
long end = start + duty;
if (end > tiles)
end = tiles;
for (long job = start; job < end; ++job) {
long ii = m0 + job / xtiles * RM;
long jj = n0 + job % xtiles * RN;
D Cv[RN][RM] = {};
D Ce[RN][RM] = {};
for (long l = 0; l < k; l += KN)
#pragma GCC unroll 100
for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
for (int i = 0; i < RM; ++i)
if (PRECISE)
Cv[j][i] = madder(load<V>(INDEX(A, lda, ii + i, l)), //
load<V>(INDEX(B, ldb, jj + j, l)), //
Cv[j][i], &Ce[j][i]);
else
Cv[j][i] = madd(load<V>(INDEX(A, lda, ii + i, l)), //
load<V>(INDEX(B, ldb, jj + j, l)), //
Cv[j][i]);
#pragma GCC unroll 100
for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
for (int i = 0; i < RM; ++i)
store(INDEX(C, ldc, jj + j, ii + i), hsum(Cv[j][i]));
}
}
const TA* const A;
const TB* const B;
TC* const C;
const long k;
const long lda;
const long ldb;
const long ldc;
const int ith;
const int nth;
};
//////////////////////////////////////////////////////////////////////////////////////////
// QUANT ZERO MATRIX MULTIPLICATION
#if defined(__ARM_FEATURE_DOTPROD)
template <int CONFIG, typename TA, typename TB, typename TC>
class tinyBLAS_Q0_ARM {
public:
tinyBLAS_Q0_ARM(long k, const TA* A, long lda, const TB* B, long ldb, TC* C, long ldc, int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(long m, long n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(long m0, long m, long n0, long n) {
long mc, nc, mp, np;
if (!FLAG_precise) {
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3, false>(m0, m, n0, n);
break;
case 0x32:
case 0x23:
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, false>(m0, m, n0, n);
break;
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, false>(m0, m, n0, n);
break;
case 0x13:
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, false>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, false>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3, true>(m0, m, n0, n);
break;
case 0x32:
case 0x23:
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, true>(m0, m, n0, n);
break;
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, true>(m0, m, n0, n);
break;
case 0x13:
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, true>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, true>(m0, m, n0, n);
break;
default:
return;
}
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
template <int RM, int RN, int PRECISE>
NOINLINE void gemm(long m0, long m, long n0, long n) {
long ytiles = RM > 1 ? (m - m0) / RM : 1;
long xtiles = RN > 1 ? (n - n0) / RN : 1;
long tiles = xtiles * ytiles;
long duty = (tiles + nth - 1) / nth;
long start = duty * ith;
long end = start + duty;
if (end > tiles)
end = tiles;
for (long job = start; job < end; ++job) {
long ii = m0 + job / xtiles * RM;
long jj = n0 + job % xtiles * RN;
float32x4_t Cv[RN][RM] = {};
float32x4_t Ce[RN][RM] = {};
for (int l = 0; l < k; ++l)
#pragma GCC unroll 100
for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
for (int i = 0; i < RM; ++i) {
float32x4_t a = vcvtq_f32_s32(vdotq_s32(
vdotq_s32(vdupq_n_s32(0), load_lo(INDEX(A, lda, ii + i, l)),
load_lo(INDEX(B, ldb, jj + j, l))),
load_hi(INDEX(A, lda, ii + i, l)), load_hi(INDEX(B, ldb, jj + j, l))));
float b = unhalf(INDEX(A, lda, ii + i, l)->d) *
unhalf(INDEX(B, ldb, jj + j, l)->d);
if (PRECISE)
Cv[j][i] = badder(a, b, Cv[j][i], &Ce[j][i]);
else
Cv[j][i] = vmlaq_n_f32(Cv[j][i], a, b);
}
#pragma GCC unroll 100
for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
for (int i = 0; i < RM; ++i)
store(INDEX(C, ldc, jj + j, ii + i), hsum(Cv[j][i]));
}
}
inline int8x16_t load_lo(const block_q8_0* b) {
return vld1q_s8(b->qs);
}
inline int8x16_t load_hi(const block_q8_0* b) {
return vld1q_s8(b->qs + 16);
}
inline int8x16_t load_lo(const block_q4_0* b) {
return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs), vdupq_n_u8(0x0f))),
vdupq_n_s8(0x8));
}
inline int8x16_t load_hi(const block_q4_0* b) {
return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)), vdupq_n_s8(0x8));
}
const TA* const A;
const TB* const B;
TC* const C;
const long k;
const long lda;
const long ldb;
const long ldc;
const int ith;
const int nth;
};
#endif // __ARM_FEATURE_DOTPROD
#if defined(__AVX2__) || defined(__AVX512F__)
template <int CONFIG, typename TA, typename TB, typename TC>
class tinyBLAS_Q0_AVX2 {
public:
tinyBLAS_Q0_AVX2(long k, const TA* A, long lda, const TB* B, long ldb, TC* C, long ldc, int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(long m, long n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
void mnpack(long m0, long m, long n0, long n) {
long mc, nc, mp, np;
#if VECTOR_REGISTERS == 32
if (!FLAG_precise) {
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3, false>(m0, m, n0, n);
break;
case 0x32:
case 0x23:
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, false>(m0, m, n0, n);
break;
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, true>(m0, m, n0, n);
break;
case 0x13:
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, true>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, true>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3, true>(m0, m, n0, n);
break;
case 0x32:
case 0x23:
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, true>(m0, m, n0, n);
break;
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, true>(m0, m, n0, n);
break;
case 0x13:
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, true>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, true>(m0, m, n0, n);
break;
default:
return;
}
}
#endif
#if VECTOR_REGISTERS == 16
if (!FLAG_precise) {
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 2)) {
case 0x32:
mc = 3;
nc = 2;
gemm<3, 2, false>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm<2, 3, false>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2, false>(m0, m, n0, n);
break;
case 0x31:
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, false>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, false>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, false>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch ((MIN(m - m0, 2) << 4) | MIN(n - n0, 1)) {
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1, true>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2, true>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1, true>(m0, m, n0, n);
break;
default:
return;
}
}
#endif
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
template <int RM, int RN, int PRECISE>
NOINLINE void gemm(long m0, long m, long n0, long n) {
long ytiles = RM > 1 ? (m - m0) / RM : 1;
long xtiles = RN > 1 ? (n - n0) / RN : 1;
long tiles = xtiles * ytiles;
long duty = (tiles + nth - 1) / nth;
long start = duty * ith;
long end = start + duty;
if (end > tiles)
end = tiles;
for (long job = start; job < end; ++job) {
long ii = m0 + job / xtiles * RM;
long jj = n0 + job % xtiles * RN;
__m256 Cv[RN][RM] = {};
__m256 Ce[RN][RM] = {};
for (long l = 0; l < k; ++l)
#pragma GCC unroll 100
for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
for (int i = 0; i < RM; ++i) {
__m256 a = _mm256_set1_ps(unhalf(INDEX(A, lda, ii + i, l)->d) *
unhalf(INDEX(B, ldb, jj + j, l)->d));
__m256 b = updot(_mm256_sign_epi8(load(INDEX(A, lda, ii + i, l)),
load(INDEX(A, lda, ii + i, l))),
_mm256_sign_epi8(load(INDEX(B, ldb, jj + j, l)),
load(INDEX(A, lda, ii + i, l))));
if (PRECISE)
Cv[j][i] = madder(a, b, Cv[j][i], &Ce[j][i]);
else
Cv[j][i] = madd(a, b, Cv[j][i]);
}
#pragma GCC unroll 100
for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
for (int i = 0; i < RM; ++i)
store(INDEX(C, ldc, jj + j, ii + i), hsum(Cv[j][i]));
}
}
inline __m256i load(const block_q8_0* b) {
return _mm256_loadu_si256((const __m256i*)b->qs);
}
inline __m256i load(const block_q4_0* b) {
__m128i x = _mm_loadu_si128((const __m128i*)b->qs);
return _mm256_sub_epi8(_mm256_and_si256(_mm256_set1_epi8(15),
_mm256_insertf128_si256(_mm256_castsi128_si256(x),
_mm_srli_epi16(x, 4), 1)),
_mm256_set1_epi8(8));
}
inline __m256 updot(__m256i u, __m256i s) {
__m256i res;
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
#else
res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
#endif
return _mm256_cvtepi32_ps(res);
}
const TA* const A;
const TB* const B;
TC* const C;
const long k;
const long lda;
const long ldb;
const long ldc;
const int ith;
const int nth;
};
#endif // __AVX2__
} // namespace