kvcache-ai-ktransformers/ktransformers/server/backend/interfaces/ktransformers.py
2024-07-27 16:06:58 +08:00

78 lines
3.6 KiB
Python

import torch
from transformers import AutoTokenizer, AutoConfig, GenerationConfig
from ktransformers.server.backend.interfaces.transformers import TransformersInterface,ConfigArgs, TransformersThreadContext,default_args,TextStreamer
from ktransformers.server.config.log import logger
from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.custom_cache import StaticCache
from ktransformers.util.cuda_graph_runner import CUDAGraphRunner
from ktransformers.local_chat import custom_models, default_optimize_rules
class KTransformersThreadContext(TransformersThreadContext):
pass
class KTransformersInterface(TransformersInterface):
def __init__(self,args:ConfigArgs= default_args):
self.args = args
torch.set_default_dtype(torch.bfloat16)
torch.set_grad_enabled(False)
self.tokenizer = AutoTokenizer.from_pretrained(args.model_dir,device = args.device)
config=AutoConfig.from_pretrained(args.model_dir, trust_remote_code=True)
if config.architectures[0] == "Qwen2MoeForCausalLM":
config._attn_implementation="flash_attention_2"
with torch.device("meta"):
self.model=custom_models[config.architectures[0]](config)
optimize_rule_path = default_optimize_rules[config.architectures[0]]
# print(optimize_config)
gguf_path = args.gguf_path
if gguf_path is None:
gguf_path = input(
"please input the path of your gguf file(gguf file in the dir containing input gguf file must all belong to current model):"
)
optimize_and_load_gguf(self.model, optimize_rule_path, gguf_path, config)
logger.info(f'{args.model_name} loaded from {args.model_dir} to {args.device}')
self.cache = StaticCache(config=self.model.config, max_batch_size=args.batch_size, max_cache_len=args.cache_lens, device=args.device, dtype=self.model.dtype)
logger.info(f'StaticCache (length={args.cache_lens}) created at {args.device}, batch size:{args.batch_size}')
self.model.generation_config = GenerationConfig.from_pretrained(args.model_dir)
if self.model.generation_config.pad_token_id is None:
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
self.streamer = TextStreamer(self.tokenizer)
def decode_one_tokens(self):
if not hasattr(self, "cuda_graph_runner"):
self.cuda_graph_runner = CUDAGraphRunner()
self.cuda_graph_runner.capture(self.model, self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position, self.cache, return_dict=False, use_cache=True)
if hasattr(self, "cuda_graph_runner"):
logits = self.cuda_graph_runner(self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position)
self.cache.change_seq_length(1)
torch.cuda.synchronize()
logits = logits[0,-1,:]
return self.logits_to_token(logits)
if self.use_static_cache:
mask = torch.ones((1,self.seq_length)).to(self.args.device)
logits = self.model(
self.current_ids,
cache_position=self.active_cache_position,
past_key_values=self.cache,
attention_mask=mask,
return_dict=False,
use_cache=True
)[0]
else:
logits = self.model(
self.current_ids,
return_dict=False
)[0]
logits = logits[0,-1,:]
return self.logits_to_token(logits)