kvcache-ai-ktransformers/ktransformers/ktransformers_ext/ext_bindings.cpp
2024-07-27 16:06:58 +08:00

264 lines
12 KiB
C++

/**
* @Description :
* @Author : chenht2022
* @Date : 2024-07-22 02:03:22
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:34:23
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
// Python bindings
#include <cstdint>
#include <iostream>
#include <memory>
#include "cpu_backend/cpuinfer.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "llamafile/flags.h"
#include "operators/llamafile/linear.h"
#include "operators/llamafile/mlp.h"
#include "operators/llamafile/moe.h"
#include "pybind11/functional.h"
#include "pybind11/operators.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
namespace py = pybind11;
using namespace pybind11::literals;
// Binding functions for the Linear class
class LinearBindings {
public:
static void bind_forward(CPUInfer& cpuinfer, Linear* linear, py::args args, py::kwargs kwargs) {
auto input = args[0].cast<intptr_t>();
auto output = args[1].cast<intptr_t>();
cpuinfer.submit(&Linear::forward, linear,
(const void*)input, (void*)output);
}
static void bind_warm_up(CPUInfer& cpuinfer, Linear* linear, py::args args, py::kwargs kwargs) {
cpuinfer.submit(&Linear::warm_up, linear);
}
static void bind_functions(CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
auto linear = func.attr("__self__").cast<Linear*>();
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
bind_forward(cpuinfer, linear, args, kwargs);
} else if (func_name == "warm_up") {
bind_warm_up(cpuinfer, linear, args, kwargs);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
}
}
};
// Binding functions for the MLP class
class MLPBindings {
public:
static void bind_forward(CPUInfer& cpuinfer, MLP* mlp, py::args args, py::kwargs kwargs) {
auto input = args[0].cast<intptr_t>();
auto output = args[1].cast<intptr_t>();
cpuinfer.submit(&MLP::forward, mlp,
(const void*)input, (void*)output);
}
static void bind_warm_up(CPUInfer& cpuinfer, MLP* mlp, py::args args, py::kwargs kwargs) {
cpuinfer.submit(&MLP::warm_up, mlp);
}
static void bind_functions(CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
auto mlp = func.attr("__self__").cast<MLP*>();
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
bind_forward(cpuinfer, mlp, args, kwargs);
} else if (func_name == "warm_up") {
bind_warm_up(cpuinfer, mlp, args, kwargs);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
}
}
};
// Binding functions for the MOE class
class MOEBindings {
public:
static void bind_forward(CPUInfer& cpuinfer, MOE* moe, py::args args, py::kwargs kwargs) {
int qlen = args[0].cast<int>();
int k = args[1].cast<int>();
auto expert_ids = args[2].cast<intptr_t>();
auto weights = args[3].cast<intptr_t>();
auto input = args[4].cast<intptr_t>();
auto output = args[5].cast<intptr_t>();
cpuinfer.submit(&MOE::forward, moe,
qlen, k, (const uint64_t*)expert_ids, (const float*)weights, (const void*)input, (void*)output);
}
static void bind_warm_up(CPUInfer& cpuinfer, MOE* moe, py::args args, py::kwargs kwargs) {
cpuinfer.submit(&MOE::warm_up, moe);
}
static void bind_functions(CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
auto moe = func.attr("__self__").cast<MOE*>();
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
bind_forward(cpuinfer, moe, args, kwargs);
} else if (func_name == "warm_up") {
bind_warm_up(cpuinfer, moe, args, kwargs);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
}
}
};
struct MOEForwardArgs {
CPUInfer* cpuinfer;
MOE* moe;
int qlen;
int k;
uint64_t* expert_ids;
float* weights;
void* input;
void* output;
};
void submit_moe_forward_with_host_args_ptr(void* host_args_ptr) {
MOEForwardArgs* host_args = (MOEForwardArgs*)host_args_ptr;
host_args->cpuinfer->submit(&MOE::forward, host_args->moe,
host_args->qlen, host_args->k, host_args->expert_ids, host_args->weights, host_args->input, host_args->output);
}
void cpuinfer_sync(void* host_args_ptr) {
CPUInfer* cpuinfer = (CPUInfer*)host_args_ptr;
cpuinfer->sync();
}
PYBIND11_MODULE(cpuinfer_ext, m) {
auto linear_module = m.def_submodule("linear");
py::class_<LinearConfig>(linear_module, "LinearConfig")
.def(py::init([](int hidden_size, int intermediate_size, int stride, intptr_t proj, int proj_type, int hidden_type) {
return LinearConfig(hidden_size, intermediate_size, stride, (void*)proj, (ggml_type)proj_type, (ggml_type)hidden_type);
}));
py::class_<Linear>(linear_module, "Linear")
.def(py::init<LinearConfig>())
.def("warm_up", [](Linear& linear) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
})
.def("forward", [](Linear& linear, intptr_t input, intptr_t output) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
});
auto mlp_module = m.def_submodule("mlp");
py::class_<MLPConfig>(mlp_module, "MLPConfig")
.def(py::init([](int hidden_size, int intermediate_size, int stride, intptr_t gate_proj, intptr_t up_proj, intptr_t down_proj, int gate_type, int up_type, int down_type, int hidden_type) {
return MLPConfig(hidden_size, intermediate_size, stride, (void*)gate_proj, (void*)up_proj, (void*)down_proj, (ggml_type)gate_type, (ggml_type)up_type, (ggml_type)down_type, (ggml_type)hidden_type);
}));
py::class_<MLP>(mlp_module, "MLP")
.def(py::init<MLPConfig>())
.def("warm_up", [](MLP& mlp) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
})
.def("forward", [](MLP& mlp, intptr_t input, intptr_t output) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
});
auto moe_module = m.def_submodule("moe");
py::class_<MOEConfig>(moe_module, "MOEConfig")
.def(py::init([](int expert_num, int routed_expert_num, int hidden_size, int intermediate_size, int stride, int group_min_len, int group_max_len, intptr_t gate_proj, intptr_t up_proj, intptr_t down_proj, int gate_type, int up_type, int down_type, int hidden_type) {
return MOEConfig(expert_num, routed_expert_num, hidden_size, intermediate_size, stride, group_min_len, group_max_len, (void*)gate_proj, (void*)up_proj, (void*)down_proj, (ggml_type)gate_type, (ggml_type)up_type, (ggml_type)down_type, (ggml_type)hidden_type);
}));
py::class_<MOE>(moe_module, "MOE")
.def(py::init<MOEConfig>())
.def("warm_up", [](MOE& moe) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
})
.def("forward", [](MOE& moe, int k, uint64_t expert_ids, intptr_t weights, intptr_t input, intptr_t output) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
});
py::class_<CPUInfer>(m, "CPUInfer")
.def(py::init<int>())
.def("submit",
[linear_module, mlp_module, moe_module](CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
if (py::hasattr(func, "__self__") &&
py::hasattr(func, "__func__")) {
std::string class_name = py::str(func.attr("__self__")
.attr("__class__")
.attr("__name__"));
if (class_name == "Linear") {
LinearBindings::bind_functions(cpuinfer, func,
args, kwargs);
} else if (class_name == "MLP") {
MLPBindings::bind_functions(cpuinfer, func,
args, kwargs);
} else if (class_name == "MOE") {
MOEBindings::bind_functions(cpuinfer, func,
args, kwargs);
} else {
// handle other classes
throw py::type_error("Unsupported class type: " +
class_name);
}
} else {
// handle cases where func does not have __self__ or
// __func__
throw py::type_error(
"Invalid function object: missing "
"__self__ or __func__ attribute.");
}
})
.def("submit_with_cuda_stream",
[linear_module, mlp_module, moe_module](CPUInfer& cpuinfer, intptr_t user_cuda_stream, py::object func, py::args args, py::kwargs kwargs) {
if (py::hasattr(func, "__self__") &&
py::hasattr(func, "__func__")) {
std::string class_name = py::str(func.attr("__self__")
.attr("__class__")
.attr("__name__"));
if (class_name == "MOE") {
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
auto moe = func.attr("__self__").cast<MOE*>();
int qlen = args[0].cast<int>();
int k = args[1].cast<int>();
auto expert_ids = args[2].cast<intptr_t>();
auto weights = args[3].cast<intptr_t>();
auto input = args[4].cast<intptr_t>();
auto output = args[5].cast<intptr_t>();
MOEForwardArgs* moe_forward_args = new MOEForwardArgs{&cpuinfer, moe, qlen, k, (uint64_t*)expert_ids, (float*)weights, (void*)input, (void*)output};
// submit_moe_forward_with_host_args_ptr(moe_forward_args);
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)submit_moe_forward_with_host_args_ptr, moe_forward_args);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
}
} else {
// handle other classes
throw py::type_error("Unsupported class type: " +
class_name);
}
} else {
// handle cases where func does not have __self__ or
// __func__
throw py::type_error(
"Invalid function object: missing "
"__self__ or __func__ attribute.");
}
})
.def("sync_with_cuda_stream", [](CPUInfer& cpuinfer, intptr_t user_cuda_stream) {
// cpuinfer_sync((void*)(&cpuinfer));
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)cpuinfer_sync, (void*)(&cpuinfer));
})
.def("sync", &CPUInfer::sync);
}