mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 12:40:02 +00:00
83 lines
No EOL
2.9 KiB
Python
83 lines
No EOL
2.9 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Description :
|
|
Author : chenht2022
|
|
Date : 2024-07-25 10:32:05
|
|
Version : 1.0.0
|
|
LastEditors : chenht2022
|
|
LastEditTime : 2024-07-25 10:34:00
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
'''
|
|
import os, sys
|
|
import time
|
|
sys.path.append(os.path.dirname(__file__) + '/../build')
|
|
import cpuinfer_ext
|
|
import torch
|
|
|
|
with torch.inference_mode(mode=True):
|
|
input_size = 16384
|
|
output_size = 5120
|
|
stride = 32
|
|
proj_type = 1 # ggml_type::GGML_TYPE_F16
|
|
hidden_type = 1 # ggml_type::GGML_TYPE_F16
|
|
layer_num = 10
|
|
CPUInfer = cpuinfer_ext.CPUInfer(48)
|
|
validation_iter = 100
|
|
warm_up_iter = 1000
|
|
test_iter = 10000
|
|
|
|
linears = []
|
|
projs = []
|
|
for _ in range(layer_num):
|
|
proj = torch.randn((output_size, input_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
|
|
config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, proj.data_ptr(), proj_type, hidden_type)
|
|
linear = cpuinfer_ext.linear.Linear(config)
|
|
projs.append(proj)
|
|
linears.append(linear)
|
|
|
|
# validation
|
|
for i in range(validation_iter):
|
|
linear = linears[i % layer_num]
|
|
input = torch.randn((1, input_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((1, output_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
|
|
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
|
|
CPUInfer.sync()
|
|
# print('cpuinfer output', output)
|
|
|
|
proj = projs[i%layer_num]
|
|
t_output = torch.mm(input, proj.t())
|
|
# print('torch output', t_output)
|
|
|
|
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
|
|
print('diff = ', diff)
|
|
assert(diff < 0.001)
|
|
|
|
# warm up
|
|
for i in range(warm_up_iter):
|
|
linear = linears[i % layer_num]
|
|
input = torch.randn((1, input_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((1, output_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
|
|
CPUInfer.sync()
|
|
|
|
# test
|
|
total_time = 0
|
|
for i in range(test_iter):
|
|
linear = linears[i % layer_num]
|
|
input = torch.randn((1, input_size), dtype=torch.float16).contiguous()
|
|
output = torch.empty((1, output_size), dtype=torch.float16).contiguous()
|
|
input = input / 100
|
|
start = time.perf_counter()
|
|
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
|
|
CPUInfer.sync()
|
|
end = time.perf_counter()
|
|
total_time += end - start
|
|
print('Time: ', total_time)
|
|
print('Iteration: ', test_iter)
|
|
print('Time per iteration: ', total_time / test_iter)
|
|
print('Bandwidth: ', input_size * output_size * 2 * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
|
|
print("All tasks completed.") |