kvcache-ai-ktransformers/third_party/llamafile/tinyblas_cpu_mixmul.inc
2024-07-27 16:06:58 +08:00

411 lines
16 KiB
C++

// Adapted from
// https://github.com/Mozilla-Ocho/llamafile/blob/0.8.8/llamafile/tinyblas_cpu_mixmul.inc
// Copyrigth 2024 Mozilla Foundation.
// Copyright(c) 2024 by KVCache.AI, All Rights Reserved.
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi
//
// Copyright 2024 Mozilla Foundation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "tinyblas_cpu.h"
//
//
// ██████╗ ██╗ █████╗ ██████╗
// ██████╗██╗██╗ ██╗██═██╗██╔══██╗██║ ██╔══██╗██╔═══╝
// ╚═██╔═╝██║███▄██║██ ██║██████╔╝██║ ███████║██████╗
// ██║ ██║██▀███║╚███╔╝██╔══██╗██║ ██╔══██║╔═══██║
// ██║ ██║██║ ██║ ███║ ██████╔╝████╗██║ ██║██████║
// ╚═╝ ╚═╝╚═╝ ╚═╝ ╚══╝ ╚═════╝ ╚═══╝╚═╝ ╚═╝╚═════╝
//
// MIXTURE OF EXPERTS TENSOR MULTIPLICATION
//
//
// SHAPES
//
// - weights [cols, rows, experts]
// - thought [cols, tasks, tokens] w/ tasks ≤ thinkers
// - result [rows, thinkers, tokens] w/ thinkers ≤ experts
// - plan [thinkers, tokens] w/ i32 < experts
//
// DEFINITION
//
// for thinker in range(thinkers):
// for token in range(tokens):
// for row in range(rows):
// c = 0
// for col in range(cols):
// expert = plan[token][thinker]
// a = weights[expert][row][col]
// b = thought[token][thinker % tasks][col]
// c += a * b
// result[token][thinker][row] = c
//
// REGULARITIES
//
// - tokens can be odd
// - thinkers is usually 2
// - tasks is usually 1 or 2
// - cols should be a multiple of 64
// - rows should be a multiple of 64
// - experts is usually 8 but could be 60
// - tokens is always 1 for token generation
// - tokens can be huge for prompt processing
//
// EXAMPLE
//
// mixtral 8x7b w/ 217 token prompt
//
// | ne*0 ne*1 ne*2 ne*3 | nb*0 nb*1 nb*2 nb*3 | type
// =========================================================================
// weights | 16384 6144 8 1 | 18 0x2400 0x3600000 0x1b000000 | q4_0
// thought | 16384 2 217 1 | 4 0x10000 0x20000 0x1b20000 | f32
// result | 6144 2 217 1 | 4 0x6000 0xc000 0xa2c000 | f32
// plan | 2 217 1 1 | 4 0x20 0x1b20 0x1b20 | i32
//
namespace {
class MixMul {
public:
MixMul(const ggml_compute_params* params, const ggml_tensor* weights, const ggml_tensor* thought, const ggml_tensor* plan, ggml_tensor* result)
: params(params),
weights(weights),
thought(thought),
plan(plan),
result(result),
rows(weights->ne[1]),
cols(weights->ne[0]),
experts(weights->ne[2]),
thinkers(plan->ne[0]),
tasks(thought->ne[1]),
tokens(thought->ne[2]),
ldq((cols * 2 + ROW_ALIGN - 1) & -ROW_ALIGN),
wdata_((char*)(((uintptr_t)params->wdata + MAX_ALIGN - 1) & -MAX_ALIGN)),
allocated_(0) {
}
bool allocate_shared_memory() {
if (!(quantized_thought_ = allocate<char>(MATRIX_ALIGN, tokens * tasks * ldq)))
return false;
if (!(rowptr_result_ = allocate<uintptr_t>(ROW_ALIGN, experts * tokens * thinkers)))
return false;
if (!(rowptr_thought_ = allocate<uintptr_t>(ROW_ALIGN, experts * tokens * thinkers)))
return false;
if (!(rowptr_count_ = allocate<long>(sizeof(long), experts)))
return false;
return true;
}
size_t get_allocated_bytes() {
return (wdata_ - (char*)params->wdata) + allocated_;
}
bool mixmul() {
// invariants
assert(tasks <= thinkers);
assert(thinkers <= experts);
assert(tokens == plan->ne[1]);
assert(rows == result->ne[0]);
assert(cols == thought->ne[0]);
assert(tokens == result->ne[2]);
assert(thinkers == result->ne[1]);
// dimensionality
assert(plan->ne[2] == 1);
assert(plan->ne[3] == 1);
assert(result->ne[3] == 1);
assert(weights->ne[3] == 1);
assert(thought->ne[3] == 1);
// miscellaneous
assert(params->nth > 0);
assert(params->ith < params->nth);
assert(plan->type == GGML_TYPE_I32);
// check nb01 is convertible to lda
if (weights->nb[1] % ggml_type_size(weights->type))
return false;
// no support for column strides
if (result->nb[0] != ggml_type_size(result->type))
return false;
if (thought->nb[0] != ggml_type_size(thought->type))
return false;
if (weights->nb[0] != ggml_type_size(weights->type))
return false;
// supported output types
switch (result->type) {
case GGML_TYPE_F32:
return mixmuler<float>();
default:
return false;
}
}
private:
template <typename TC>
bool mixmuler() {
switch (weights->type) {
case GGML_TYPE_F32:
if (thought->type != GGML_TYPE_F32)
return false;
#if defined(__AVX512F__)
return mixmat<16, 1, tinyBLAS<NCB | NCC, 16, __m512, __m512, float, float, TC>, float,
float, TC>();
#elif defined(__AVX__) || defined(__AVX2__)
return mixmat<8, 1, tinyBLAS<NCB | NCC, 8, __m256, __m256, float, float, TC>, float,
float, TC>();
#elif defined(__SSE__)
return mixmat<4, 1, tinyBLAS<NCB | NCC, 4, __m128, __m128, float, float, TC>, float,
float, TC>();
#elif defined(__ARM_NEON)
return mixmat<4, 1, tinyBLAS<NCB | NCC, 4, float32x4_t, float32x4_t, float, float, TC>,
float, float, TC>();
#else
return false;
#endif
case GGML_TYPE_BF16:
if (thought->type != GGML_TYPE_F32 && thought->type != GGML_TYPE_BF16)
return false;
#if defined(__AVX512BF16__)
if (!FLAG_precise) {
return mixmat<
32, 1, tinyBLAS<NCB | NCC, 32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, TC>,
ggml_bf16_t, ggml_bf16_t, TC>();
} else {
return mixmat<16, 1,
tinyBLAS<NCB | NCC, 16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, TC>,
ggml_bf16_t, ggml_bf16_t, TC>();
}
#elif defined(__AVX512F__)
return mixmat<16, 1,
tinyBLAS<NCB | NCC, 16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, TC>,
ggml_bf16_t, ggml_bf16_t, TC>();
#elif defined(__AVX2__)
return mixmat<8, 1,
tinyBLAS<NCB | NCC, 8, __m256, __m256, ggml_bf16_t, ggml_bf16_t, TC>,
ggml_bf16_t, ggml_bf16_t, TC>();
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
return mixmat<
4, 1,
tinyBLAS<NCB | NCC, 4, float32x4_t, float32x4_t, ggml_bf16_t, ggml_bf16_t, TC>,
ggml_bf16_t, ggml_bf16_t, TC>();
#else
return false;
#endif
case GGML_TYPE_F16:
if (thought->type != GGML_TYPE_F32 && thought->type != GGML_TYPE_F16)
return false;
#if defined(__AVX512F__)
return mixmat<16, 1,
tinyBLAS<NCB | NCC, 16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, TC>,
ggml_fp16_t, ggml_fp16_t, TC>();
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
// if (X86_CHECK(F16C)) {
return mixmat<8, 1,
tinyBLAS<NCB | NCC, 8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, TC>,
ggml_fp16_t, ggml_fp16_t, TC>();
// } else {
// return false;
// }
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (result->op_params[0] == GGML_PREC_F32) {
return mixmat<
4, 1,
tinyBLAS<NCB | NCC, 4, float32x4_t, float32x4_t, ggml_fp16_t, ggml_fp16_t, TC>,
ggml_fp16_t, ggml_fp16_t, TC>();
} else {
return mixmat<
8, 1,
tinyBLAS<NCB | NCC, 8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, TC>,
ggml_fp16_t, ggml_fp16_t, TC>();
}
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
return mixmat<
4, 1,
tinyBLAS<NCB | NCC, 4, float32x4_t, float32x4_t, ggml_fp16_t, ggml_fp16_t, TC>,
ggml_fp16_t, ggml_fp16_t, TC>();
#else
return false;
#endif
case GGML_TYPE_Q4_0:
if (thought->type != GGML_TYPE_F32 && thought->type != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__)
return mixmat<32, 32, tinyBLAS_Q0_AVX2<NCB | NCC, block_q4_0, block_q8_0, TC>,
block_q4_0, block_q8_0, TC>();
#elif defined(__ARM_FEATURE_DOTPROD)
return mixmat<32, 32, tinyBLAS_Q0_ARM<NCB | NCC, block_q4_0, block_q8_0, TC>,
block_q4_0, block_q8_0, TC>();
#else
return false;
#endif
case GGML_TYPE_Q8_0:
if (thought->type != GGML_TYPE_F32 && thought->type != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__)
return mixmat<32, 32, tinyBLAS_Q0_AVX2<NCB | NCC, block_q8_0, block_q8_0, TC>,
block_q8_0, block_q8_0, TC>();
#elif defined(__ARM_FEATURE_DOTPROD)
return mixmat<32, 32, tinyBLAS_Q0_ARM<NCB | NCC, block_q8_0, block_q8_0, TC>,
block_q8_0, block_q8_0, TC>();
#else
return false;
#endif
default:
return false;
}
}
template <int KN, int BS, typename BLAS, typename TA, typename TB, typename TC>
bool mixmat() {
if (cols % KN)
return false;
switch (params->type) {
case GGML_TASK_TYPE_INIT:
if (thought->type != ggml_type_trait<TB>::id)
quantize_thought(ggml_type_trait<TB>::id);
build_row_pointers(ggml_type_trait<TB>::id);
return true;
case GGML_TASK_TYPE_COMPUTE:
assert(!(cols % BS));
assert(!(weights->nb[1] % sizeof(TA)));
for (int expert = 0; expert < experts; ++expert) {
BLAS tb{cols / BS,
(const TA*)((const char*)weights->data + expert * weights->nb[2]),
(long)(weights->nb[1] / sizeof(TA)),
(const TB*)(rowptr_thought_ + expert * tokens * thinkers),
0,
(TC*)(rowptr_result_ + expert * tokens * thinkers),
0,
params->ith,
params->nth};
tb.matmul(rows, rowptr_count_[expert], GGML_TASK_TYPE_COMPUTE);
}
return true;
default:
return true;
}
}
void build_row_pointers(ggml_type vec_dot_type) {
for (int expert = params->ith; expert < experts; expert += params->nth) {
long count = 0;
for (long token = 0; token < tokens; ++token)
for (int thinker = 0; thinker < thinkers; ++thinker)
if (expert == *(const int32_t*)((const char*)plan->data +
token * plan->nb[1] + thinker * plan->nb[0])) {
long row = count++;
long idx = expert * thinkers * tokens + row;
rowptr_result_[idx] =
(uintptr_t)((char*)result->data + token * result->nb[2] +
thinker * result->nb[1]);
if (thought->type == vec_dot_type)
rowptr_thought_[idx] =
(uintptr_t)((char*)thought->data + token * thought->nb[2] +
thinker % tasks * thought->nb[1]);
else
rowptr_thought_[idx] =
(uintptr_t)((char*)quantized_thought_ + token * tasks * ldq +
thinker % tasks * ldq);
}
rowptr_count_[expert] = count;
}
}
void quantize_thought(ggml_type vec_dot_type) {
long chore = 0;
for (long token = 0; token < tokens; ++token)
for (int task = 0; task < tasks; ++task)
if (chore++ % params->nth == params->ith)
quantize_row(quantized_thought_ + token * tasks * ldq + task * ldq,
(const float*)((const char*)thought->data +
token * thought->nb[2] + task * thought->nb[1]),
vec_dot_type);
}
void quantize_row(void* dst, const float* src, ggml_type type) {
assert((long)ggml_row_size(type, cols) <= ldq);
switch (type) {
case GGML_TYPE_F16:
ggml_fp32_to_fp16_row(src, (ggml_fp16_t*)dst, cols);
break;
case GGML_TYPE_BF16:
ggml_fp32_to_bf16_row(src, (ggml_bf16_t*)dst, cols);
break;
case GGML_TYPE_Q8_0:
quantize_row_q8_0((const float*)src, (block_q8_0*)dst, cols);
break;
default:
GGML_UNREACHABLE();
}
}
template <typename T>
T* allocate(size_t align, size_t elems) {
T* res = nullptr;
size_t need = sizeof(T) * elems;
size_t base = allocated_;
base += align - 1;
base &= -align;
size_t toto = base + need;
if (toto >= allocated_ && toto <= params->wsize) {
res = (T*)(wdata_ + base);
allocated_ = toto;
}
return res;
}
const ggml_compute_params* const params;
const ggml_tensor* const weights;
const ggml_tensor* const thought;
const ggml_tensor* const plan;
ggml_tensor* const result;
const long rows;
const long cols;
const int experts;
const int thinkers;
const int tasks;
const long tokens;
const long ldq;
// variables
char* const wdata_;
size_t allocated_;
// shared memory
long* rowptr_count_ /*[experts]*/;
char* quantized_thought_ /*[tokens][tasks][cols][2]*/;
uintptr_t* rowptr_result_ /*[experts][tokens*thinkers]*/;
uintptr_t* rowptr_thought_ /*[experts][tokens*thinkers]*/;
};
} // namespace
/**
* Performs "mixture of experts" tensor multiplication on CPU.
*/
bool llamafile_mixmul(const ggml_compute_params* params, const ggml_tensor* weights, const ggml_tensor* thought, const ggml_tensor* plan, ggml_tensor* result) {
MixMul mm{params, weights, thought, plan, result};
return mm.allocate_shared_memory() && mm.mixmul();
}