kvcache-ai-ktransformers/ktransformers/operators/RoPE.py
2024-08-28 16:11:43 +00:00

172 lines
5.3 KiB
Python

"""
Description :
Author : Boxin Zhang
Version : 0.1.0
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
"""
from torch import nn
from transformers import ROPE_INIT_FUNCTIONS
from ktransformers.models.modeling_llama import (
LlamaRotaryEmbedding,
LlamaLinearScalingRotaryEmbedding,
LlamaDynamicNTKScalingRotaryEmbedding,
)
from ktransformers.models.modeling_deepseek import (
DeepseekV2YarnRotaryEmbedding,
DeepseekV2RotaryEmbedding,
)
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader
from ktransformers.util.utils import InferenceState
from transformers.configuration_utils import PretrainedConfig
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe
class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
)
self.orig_module.__init__(
orig_module.dim, orig_module.max_position_embeddings, orig_module.base
)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
self.orig_module.__init__(
self.orig_module.dim,
self.orig_module.max_position_embeddings,
self.orig_module.base,
self.device,
)
class RotaryEmbeddingV2(BaseInjectedModule, LlamaRotaryEmbedding):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
)
self.orig_module.__init__(
orig_module.dim,
orig_module.max_position_embeddings,
orig_module.base,
None,
orig_module.scaling_factor,
orig_module.rope_type,
orig_module.config,
)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
self.orig_module.__init__(
self.orig_module.dim,
self.orig_module.max_position_embeddings,
self.orig_module.base,
self.device,
self.orig_module.scaling_factor,
self.orig_module.rope_type,
self.orig_module.config,
)
class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
)
self.orig_module.__init__(
orig_module.dim,
orig_module.max_position_embeddings,
orig_module.base,
None, # device
orig_module.scaling_factor,
orig_module.original_max_position_embeddings,
orig_module.beta_fast,
orig_module.beta_slow,
orig_module.mscale,
orig_module.mscale_all_dim,
)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
self.orig_module.__init__(
self.orig_module.dim,
self.orig_module.max_position_embeddings,
self.orig_module.base,
self.generate_device,
self.orig_module.scaling_factor,
self.orig_module.original_max_position_embeddings,
self.orig_module.beta_fast,
self.orig_module.beta_slow,
self.orig_module.mscale,
self.orig_module.mscale_all_dim,
)
class DynamicNTKScalingRotaryEmbedding(
BaseInjectedModule, LlamaDynamicNTKScalingRotaryEmbedding
):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, device, **kwargs
)
self.orig_module.__init__(
orig_module.dim,
orig_module.max_position_embeddings,
orig_module.base,
None, # device
orig_module.scaling_factor,
orig_module.rope_type,
orig_module.config,
)
def load(self):
self.orig_module.__init__(
self.orig_module.dim,
self.orig_module.max_position_embeddings,
self.orig_module.base,
self.orig_module.device,
self.orig_module.scaling_factor,
self.orig_module.rope_type,
self.orig_module.config,
)