mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 12:40:02 +00:00
172 lines
5.3 KiB
Python
172 lines
5.3 KiB
Python
"""
|
|
Description :
|
|
Author : Boxin Zhang
|
|
Version : 0.1.0
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
"""
|
|
|
|
from torch import nn
|
|
from transformers import ROPE_INIT_FUNCTIONS
|
|
from ktransformers.models.modeling_llama import (
|
|
LlamaRotaryEmbedding,
|
|
LlamaLinearScalingRotaryEmbedding,
|
|
LlamaDynamicNTKScalingRotaryEmbedding,
|
|
)
|
|
from ktransformers.models.modeling_deepseek import (
|
|
DeepseekV2YarnRotaryEmbedding,
|
|
DeepseekV2RotaryEmbedding,
|
|
)
|
|
from ktransformers.operators.base_operator import BaseInjectedModule
|
|
from ktransformers.util.custom_gguf import GGUFLoader
|
|
from ktransformers.util.utils import InferenceState
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
|
|
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe
|
|
class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim, orig_module.max_position_embeddings, orig_module.base
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.device,
|
|
)
|
|
|
|
|
|
class RotaryEmbeddingV2(BaseInjectedModule, LlamaRotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base,
|
|
None,
|
|
orig_module.scaling_factor,
|
|
orig_module.rope_type,
|
|
orig_module.config,
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.device,
|
|
self.orig_module.scaling_factor,
|
|
self.orig_module.rope_type,
|
|
self.orig_module.config,
|
|
)
|
|
|
|
class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
# device: str = "cuda",
|
|
generate_device: str = "cuda",
|
|
prefill_device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base,
|
|
None, # device
|
|
orig_module.scaling_factor,
|
|
orig_module.original_max_position_embeddings,
|
|
orig_module.beta_fast,
|
|
orig_module.beta_slow,
|
|
orig_module.mscale,
|
|
orig_module.mscale_all_dim,
|
|
)
|
|
self.generate_device = generate_device
|
|
self.prefill_device = prefill_device
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.generate_device,
|
|
self.orig_module.scaling_factor,
|
|
self.orig_module.original_max_position_embeddings,
|
|
self.orig_module.beta_fast,
|
|
self.orig_module.beta_slow,
|
|
self.orig_module.mscale,
|
|
self.orig_module.mscale_all_dim,
|
|
)
|
|
|
|
|
|
class DynamicNTKScalingRotaryEmbedding(
|
|
BaseInjectedModule, LlamaDynamicNTKScalingRotaryEmbedding
|
|
):
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
device: str = "cuda",
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, device, **kwargs
|
|
)
|
|
self.orig_module.__init__(
|
|
orig_module.dim,
|
|
orig_module.max_position_embeddings,
|
|
orig_module.base,
|
|
None, # device
|
|
orig_module.scaling_factor,
|
|
orig_module.rope_type,
|
|
orig_module.config,
|
|
)
|
|
|
|
def load(self):
|
|
self.orig_module.__init__(
|
|
self.orig_module.dim,
|
|
self.orig_module.max_position_embeddings,
|
|
self.orig_module.base,
|
|
self.orig_module.device,
|
|
self.orig_module.scaling_factor,
|
|
self.orig_module.rope_type,
|
|
self.orig_module.config,
|
|
)
|