mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-05 20:19:51 +00:00
1348 lines
57 KiB
Python
1348 lines
57 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
"""
|
|
Description :
|
|
Author : Azure-Tang
|
|
Date : 2024-07-25 11:25:24
|
|
Version : 1.0.0
|
|
LastEditors : Azure
|
|
LastEditTime : 2024-08-27 07:29:04
|
|
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
|
"""
|
|
|
|
import inspect
|
|
import math
|
|
from typing import List, Optional, Tuple, Union
|
|
import time
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
from ktransformers.operators.dynamic_attention import DynamicScaledDotProductAttention
|
|
from ktransformers.server.config.config import Config
|
|
import os
|
|
import yaml
|
|
from transformers.activations import ACT2FN
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
from transformers.modeling_attn_mask_utils import (
|
|
AttentionMaskConverter,
|
|
)
|
|
from transformers.modeling_outputs import (
|
|
MoeCausalLMOutputWithPast,
|
|
MoeModelOutputWithPast,
|
|
SequenceClassifierOutputWithPast,
|
|
TokenClassifierOutput,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import (
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_flash_attn_2_available,
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from ktransformers.models.modeling_qwen2_moe import (
|
|
Qwen2MoeSparseMoeBlock,
|
|
Qwen2MoeMLP,
|
|
Qwen2MoeDecoderLayer,
|
|
)
|
|
from ktransformers.models.modeling_deepseek import (
|
|
BaseModelOutputWithPast,
|
|
DeepseekV2DecoderLayer,
|
|
DeepseekV2MoE,
|
|
)
|
|
from transformers.models.qwen2_moe.configuration_qwen2_moe import Qwen2MoeConfig
|
|
from ktransformers.models.configuration_llama import LlamaConfig
|
|
from ktransformers.operators.base_operator import BaseInjectedModule
|
|
from ktransformers.util.utils import InferenceState
|
|
from ktransformers.util.custom_gguf import GGUFLoader
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from ktransformers.models.modeling_llama import (
|
|
LlamaDecoderLayer,
|
|
LlamaRMSNorm,
|
|
LlamaRotaryEmbedding,
|
|
)
|
|
|
|
if is_flash_attn_2_available():
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
|
_flash_supports_window_size = "window_size" in list(
|
|
inspect.signature(flash_attn_func).parameters
|
|
)
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "Qwen/Qwen1.5-MoE-A2.7B"
|
|
_CONFIG_FOR_DOC = "Qwen2MoeConfig"
|
|
|
|
QWEN2MOE_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`Qwen2MoeConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
QWEN2MOE_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance;
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
output_router_logits (`bool`, *optional*):
|
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
|
should not be returned during inference.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
|
the complete sequence length.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.",
|
|
QWEN2MOE_START_DOCSTRING,
|
|
)
|
|
class KQwen2MoeModel(BaseInjectedModule):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`]
|
|
|
|
Args:
|
|
config: Qwen2MoeConfig
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
device: str = "cuda",
|
|
per_layer_prefill_intput_threshold: int = 30000, # if None, no per-layer prefill
|
|
transfer_map: dict = None,
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, device, **kwargs
|
|
)
|
|
self.per_layer_prefill_intput_threshold = per_layer_prefill_intput_threshold
|
|
self.transfer_map = transfer_map
|
|
self.stream_device_map = dict()
|
|
|
|
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_router_logits: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
per_layer_prefill_intput_threshold: (
|
|
int | None
|
|
) = None, # if None or 0, close per-layer prefill
|
|
) -> Union[Tuple, MoeModelOutputWithPast]:
|
|
# print(f'Total length of input_ids: {input_ids.size(1)}, {input_ids.size()}')
|
|
|
|
if per_layer_prefill_intput_threshold is None:
|
|
per_layer_prefill_intput_threshold = self.per_layer_prefill_intput_threshold
|
|
per_layer_prefill_flag = False
|
|
seq_lenth = (
|
|
inputs_embeds.size(1) if inputs_embeds is not None else input_ids.size(1)
|
|
)
|
|
if (
|
|
per_layer_prefill_intput_threshold
|
|
and per_layer_prefill_intput_threshold < seq_lenth
|
|
):
|
|
per_layer_prefill_flag = True
|
|
for layer in self.layers:
|
|
self.load_layer_to(layer, InferenceState.UNLOAD)
|
|
else:
|
|
pass
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_router_logits = (
|
|
output_router_logits
|
|
if output_router_logits is not None
|
|
else self.config.output_router_logits
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError(
|
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
use_legacy_cache = False
|
|
if use_cache and not isinstance(past_key_values, Cache):
|
|
use_legacy_cache = True
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
logger.warning_once(
|
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
|
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
|
)
|
|
|
|
if inputs_embeds is None:
|
|
input_ids = input_ids.to("cpu")
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
inputs_embeds = inputs_embeds.to("cuda")
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = (
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
)
|
|
cache_position = torch.arange(
|
|
past_seen_tokens,
|
|
past_seen_tokens + inputs_embeds.shape[1],
|
|
device=inputs_embeds.device,
|
|
)
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
causal_mask = self._update_causal_mask(
|
|
attention_mask,
|
|
inputs_embeds,
|
|
cache_position,
|
|
past_key_values,
|
|
output_attentions,
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
all_router_logits = () if output_router_logits else None
|
|
next_decoder_cache = None
|
|
|
|
for i, decoder_layer in enumerate(self.layers):
|
|
if self.transfer_map is not None and i in self.transfer_map:
|
|
prev_stream = torch.cuda.current_stream()
|
|
cur_device = self.transfer_map[i]
|
|
if cur_device not in self.stream_device_map:
|
|
self.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
|
|
torch.cuda.set_device(cur_device)
|
|
self.stream_device_map[cur_device].wait_stream(prev_stream)
|
|
torch.cuda.set_stream(self.stream_device_map[cur_device])
|
|
hidden_states = hidden_states.to(
|
|
self.transfer_map[i], non_blocking=True
|
|
)
|
|
causal_mask = (
|
|
causal_mask.to(self.transfer_map[i], non_blocking=True)
|
|
if causal_mask is not None
|
|
else None
|
|
)
|
|
position_ids = (
|
|
position_ids.to(self.transfer_map[i], non_blocking=True)
|
|
if position_ids is not None
|
|
else None
|
|
)
|
|
cache_position = (
|
|
cache_position.to(self.transfer_map[i], non_blocking=True)
|
|
if cache_position is not None
|
|
else None
|
|
)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
output_router_logits,
|
|
use_cache,
|
|
cache_position,
|
|
)
|
|
else:
|
|
if per_layer_prefill_flag:
|
|
# print(f"to gpu")
|
|
self.load_layer_to(decoder_layer, InferenceState.PREFILL)
|
|
torch.cuda.empty_cache()
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
output_router_logits=output_router_logits,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
)
|
|
if per_layer_prefill_flag:
|
|
# print(f"to cpu")
|
|
self.load_layer_to(decoder_layer, InferenceState.UNLOAD)
|
|
torch.cuda.empty_cache()
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
if output_router_logits and layer_outputs[-1] is not None:
|
|
all_router_logits += (layer_outputs[-1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
if per_layer_prefill_flag:
|
|
per_layer_prefill_flag = False
|
|
for layer in self.layers:
|
|
self.load_layer_to(layer, InferenceState.GENERATE)
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = None
|
|
if use_cache:
|
|
next_cache = (
|
|
next_decoder_cache.to_legacy_cache()
|
|
if use_legacy_cache
|
|
else next_decoder_cache
|
|
)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [
|
|
hidden_states,
|
|
next_cache,
|
|
all_hidden_states,
|
|
all_self_attns,
|
|
all_router_logits,
|
|
]
|
|
if v is not None
|
|
)
|
|
return MoeModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
router_logits=all_router_logits,
|
|
)
|
|
|
|
def load_layer_to(self, layer: Qwen2MoeDecoderLayer, target: InferenceState):
|
|
assert isinstance(
|
|
layer, Qwen2MoeDecoderLayer
|
|
), "module should be nn.ModuleList of decoder layers"
|
|
|
|
# TODO Support restore to original device, not only cuda
|
|
device = "cpu" if target == InferenceState.UNLOAD else "cuda"
|
|
|
|
# attn
|
|
layer.self_attn.q_proj.set_inference_mode(target)
|
|
layer.self_attn.k_proj.set_inference_mode(target)
|
|
layer.self_attn.v_proj.set_inference_mode(target)
|
|
layer.self_attn.o_proj.set_inference_mode(target)
|
|
layer.self_attn.rotary_emb = layer.self_attn.rotary_emb.to(device)
|
|
|
|
# mlp
|
|
if isinstance(layer.mlp, Qwen2MoeSparseMoeBlock):
|
|
layer.mlp.gate.set_inference_mode(target)
|
|
layer.mlp.experts.set_inference_mode(target)
|
|
layer.mlp.shared_expert.gate_proj.set_inference_mode(target)
|
|
layer.mlp.shared_expert.up_proj.set_inference_mode(target)
|
|
layer.mlp.shared_expert.down_proj.set_inference_mode(target)
|
|
layer.mlp.shared_expert.act_fn.to(device)
|
|
layer.mlp.shared_expert_gate.to(device)
|
|
else:
|
|
layer.mlp.gate_proj.set_inference_mode(target)
|
|
layer.mlp.up_proj.set_inference_mode(target)
|
|
layer.mlp.down_proj.set_inference_mode(target)
|
|
layer.mlp.act_fn.to(device)
|
|
# layer norm
|
|
layer.input_layernorm.to(device)
|
|
layer.post_attention_layernorm.to(device)
|
|
|
|
|
|
DeepseekV2_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance;
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
class KDeepseekV2Model(BaseInjectedModule):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
|
|
|
|
Args:
|
|
config: DeepseekV2Config
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
device: str = "cuda",
|
|
per_layer_prefill_intput_threshold: int = 30000, # if None, no per-layer prefill
|
|
transfer_map: dict = None,
|
|
**kwargs,
|
|
):
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, device, **kwargs
|
|
)
|
|
self.per_layer_prefill_intput_threshold = per_layer_prefill_intput_threshold
|
|
self.transfer_map = transfer_map
|
|
self.stream_device_map = dict()
|
|
|
|
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
per_layer_prefill_intput_threshold: (
|
|
int | None
|
|
) = None, # if None, no per-layer prefill
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
if per_layer_prefill_intput_threshold is None:
|
|
per_layer_prefill_intput_threshold = self.per_layer_prefill_intput_threshold
|
|
per_layer_prefill_flag = False
|
|
seq_lenth = (
|
|
inputs_embeds.size(1) if inputs_embeds is not None else input_ids.size(1)
|
|
)
|
|
if (
|
|
per_layer_prefill_intput_threshold
|
|
and per_layer_prefill_intput_threshold < seq_lenth
|
|
):
|
|
per_layer_prefill_flag = True
|
|
for layer in self.layers:
|
|
self.load_layer_to(layer, InferenceState.UNLOAD)
|
|
torch.cuda.empty_cache()
|
|
else:
|
|
pass
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError(
|
|
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
)
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape[:2]
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length = inputs_embeds.shape[:2]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
|
)
|
|
use_cache = False
|
|
|
|
past_key_values_length = 0
|
|
if use_cache:
|
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
|
if use_legacy_cache:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
|
|
|
if inputs_embeds is None:
|
|
org_device = input_ids.device
|
|
# TODO move to embed_tokens's device, not hard code to cpu
|
|
input_ids = input_ids.to("cpu")
|
|
inputs_embeds = self.embed_tokens(input_ids).to(org_device)
|
|
input_ids = input_ids.to(org_device)
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = (
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
)
|
|
cache_position = torch.arange(
|
|
past_seen_tokens,
|
|
past_seen_tokens + inputs_embeds.shape[1],
|
|
device=inputs_embeds.device,
|
|
)
|
|
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
if per_layer_prefill_flag:
|
|
causal_mask = None
|
|
else:
|
|
if os.name == 'nt':
|
|
causal_mask = self._update_causal_mask(
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
|
)
|
|
else:
|
|
causal_mask = None
|
|
|
|
# embed positions
|
|
hidden_states = inputs_embeds
|
|
if per_layer_prefill_flag:
|
|
print(f"Total length of input_ids: {hidden_states.size(1)}")
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
t_gpu = 0
|
|
t_cpu = 0
|
|
t_f = 0
|
|
|
|
for i, decoder_layer in enumerate(self.layers):
|
|
if self.transfer_map is not None and i in self.transfer_map:
|
|
prev_stream = torch.cuda.current_stream()
|
|
cur_device = self.transfer_map[i]
|
|
if cur_device not in self.stream_device_map and cur_device.lower() != "cpu":
|
|
self.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
|
|
if cur_device.lower() != "cpu":
|
|
torch.cuda.set_device(cur_device)
|
|
self.stream_device_map[cur_device].wait_stream(prev_stream)
|
|
torch.cuda.set_stream(self.stream_device_map[cur_device])
|
|
hidden_states = hidden_states.to(
|
|
self.transfer_map[i], non_blocking=True
|
|
)
|
|
causal_mask = (
|
|
causal_mask.to(self.transfer_map[i], non_blocking=True)
|
|
if causal_mask is not None
|
|
else None
|
|
)
|
|
position_ids = (
|
|
position_ids.to(self.transfer_map[i], non_blocking=True)
|
|
if position_ids is not None
|
|
else None
|
|
)
|
|
cache_position = (
|
|
cache_position.to(self.transfer_map[i], non_blocking=True)
|
|
if cache_position is not None
|
|
else None
|
|
)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
)
|
|
else:
|
|
t3 = time.time()
|
|
if per_layer_prefill_flag:
|
|
# print(f"to gpu")
|
|
self.load_layer_to(decoder_layer, InferenceState.PREFILL)
|
|
torch.cuda.empty_cache()
|
|
t4 = time.time()
|
|
# with open("log.txt", "a") as f:
|
|
# f.write(f"@@@@@@@@@@@@@@@@@layer {i}@@@@@@@@@@@@@@@@@@@@ \n")
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
)
|
|
t5 = time.time()
|
|
if per_layer_prefill_flag:
|
|
# print(f"to cpu")
|
|
self.load_layer_to(decoder_layer, InferenceState.UNLOAD)
|
|
torch.cuda.empty_cache()
|
|
t6 = time.time()
|
|
t_gpu += t4 - t3
|
|
t_cpu += t6 - t5
|
|
t_f += t5 - t4
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
# @@@@@@@ TODO open this notes, tmp close to fit deepseekv3
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
# with open("log.txt", "a") as f:
|
|
# f.write(f"@@@After layers\n")
|
|
# f.write(f"hidden_states={hidden_states}\n")
|
|
# f.write(f"hidden_states.shape={hidden_states.shape}\n")
|
|
|
|
if per_layer_prefill_flag:
|
|
t6 = time.time()
|
|
# print(f"restore")
|
|
per_layer_prefill_flag = False
|
|
for layer in self.layers:
|
|
self.load_layer_to(layer, InferenceState.GENERATE)
|
|
torch.cuda.empty_cache()
|
|
t7 = time.time()
|
|
|
|
print(
|
|
f"total time: {t7-t3}, \n layer num{len(self.layers)}, gpu time: {t_gpu}, cpu time: {t_cpu}, forward time: {t_f}, restore time: {t7-t6}"
|
|
)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = None
|
|
if use_cache:
|
|
next_cache = (
|
|
next_decoder_cache.to_legacy_cache()
|
|
if use_legacy_cache
|
|
else next_decoder_cache
|
|
)
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
def load_layer_to(self, layer: DeepseekV2DecoderLayer, target: InferenceState):
|
|
assert isinstance(
|
|
layer, DeepseekV2DecoderLayer
|
|
), "module should be nn.ModuleList of decoder layers"
|
|
|
|
# TODO Support restore to original device, not only cuda
|
|
device = "cpu" if target == InferenceState.UNLOAD else "cuda"
|
|
|
|
# TODO Support DFS to auto use {to, set_inference_mode} according to the module type
|
|
|
|
# attn
|
|
layer.self_attn.to(device) #
|
|
|
|
# mlp
|
|
if isinstance(layer.mlp, DeepseekV2MoE):
|
|
layer.mlp.gate.to(device)
|
|
layer.mlp.experts.set_inference_mode(target)
|
|
layer.mlp.shared_experts.gate_proj.set_inference_mode(target)
|
|
layer.mlp.shared_experts.up_proj.set_inference_mode(target)
|
|
layer.mlp.shared_experts.down_proj.set_inference_mode(target)
|
|
layer.mlp.shared_experts.act_fn.to(device)
|
|
# layer.mlp.shared_expert_gate.to(device)
|
|
else:
|
|
layer.mlp.gate_proj.set_inference_mode(target)
|
|
layer.mlp.up_proj.set_inference_mode(target)
|
|
layer.mlp.down_proj.set_inference_mode(target)
|
|
layer.mlp.act_fn.to(device)
|
|
# layer norm
|
|
layer.input_layernorm.to(device)
|
|
layer.post_attention_layernorm.to(device)
|
|
|
|
|
|
LLAMA_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`LlamaConfig`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
LLAMA_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance;
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
|
the complete sequence length.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
|
LLAMA_START_DOCSTRING,
|
|
)
|
|
class LlamaPreTrainedModel(PreTrainedModel):
|
|
config_class = LlamaConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["LlamaDecoderLayer"]
|
|
_skip_keys_device_placement = ["past_key_values"]
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_cache_class = True
|
|
_supports_quantized_cache = True
|
|
_supports_static_cache = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
class KLlamaModel(BaseInjectedModule):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
|
|
|
Args:
|
|
config: LlamaConfig
|
|
"""
|
|
|
|
dynamic_sdpa = None
|
|
|
|
def __init__(
|
|
self,
|
|
key: str,
|
|
gguf_loader: GGUFLoader,
|
|
config: PretrainedConfig,
|
|
orig_module: nn.Module,
|
|
device: str = "cuda",
|
|
per_layer_prefill_intput_threshold: int = 30000, # if None, no per-layer prefill
|
|
transfer_map: dict = None,
|
|
**kwargs,
|
|
):
|
|
|
|
BaseInjectedModule.__init__(
|
|
self, key, gguf_loader, config, orig_module, device, **kwargs
|
|
)
|
|
self.per_layer_prefill_intput_threshold = per_layer_prefill_intput_threshold
|
|
self.transfer_map = transfer_map
|
|
self.stream_device_map = dict()
|
|
user_path: str = os.path.expanduser('~')
|
|
localstore_path: str = os.path.join(user_path,'.ktransformers')
|
|
config_path: str = os.path.join(localstore_path,Config.CONFIG_FILE_NAME)
|
|
with open(config_path,"r") as file:
|
|
config_yaml = yaml.safe_load(file.read())
|
|
self.long_context_config = config_yaml.get("long_context")
|
|
self.ext_config = config_yaml.get("ext")
|
|
|
|
KLlamaModel.dynamic_sdpa = DynamicScaledDotProductAttention(
|
|
max_seq_len=self.long_context_config["max_seq_len"],
|
|
block_size=self.long_context_config["block_size"],
|
|
config=config,
|
|
device=torch.device("cuda"),
|
|
local_windows_len=self.long_context_config["local_windows_len"],
|
|
topk=self.long_context_config["second_select_num"],
|
|
threads_num=self.ext_config["cpu_infer"],
|
|
anchor_type=self.long_context_config["anchor_type"],
|
|
kv_type=self.long_context_config["kv_type"],
|
|
dense_layer_num=self.long_context_config["dense_layer_num"],
|
|
anchor_num=self.long_context_config["anchor_num"],
|
|
preselect_block=self.long_context_config["preselect_block"],
|
|
block_selection_mode=self.long_context_config["head_select_mode"],
|
|
preselect_block_count=self.long_context_config["preselect_block_count"],
|
|
layer_step=self.long_context_config["layer_step"],
|
|
token_step=self.long_context_config["token_step"],
|
|
prefill_chunk_size=self.long_context_config["chunk_size"],
|
|
use_attn_sparsity=False,
|
|
)
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError(
|
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
)
|
|
use_cache = False
|
|
|
|
return_legacy_cache = False
|
|
if (
|
|
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
|
): # kept for BC (non `Cache` `past_key_values` inputs)
|
|
return_legacy_cache = True
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
logger.warning_once(
|
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
|
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
|
)
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = (
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
)
|
|
cache_position = torch.arange(
|
|
past_seen_tokens,
|
|
past_seen_tokens + inputs_embeds.shape[1],
|
|
device="cuda",
|
|
)
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
causal_mask = None
|
|
chunck_size = self.long_context_config["chunk_size"]
|
|
cur_idx = 0
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids.to("cpu"))
|
|
q_len = cache_position.size(0)
|
|
|
|
# generate
|
|
if q_len == 1:
|
|
x = inputs_embeds[:, -1:, :]
|
|
position_ids = position_ids[:, -1:]
|
|
return self.forward_chunk(
|
|
x,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
output_hidden_states,
|
|
return_dict,
|
|
)
|
|
elif q_len <= chunck_size:
|
|
inputs_embeds = inputs_embeds.to('cuda')
|
|
output = self.forward_chunk(
|
|
inputs_embeds,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
output_hidden_states,
|
|
return_dict,
|
|
)
|
|
KLlamaModel.dynamic_sdpa.calc_anchor(cache_position[-1] + 1)
|
|
KLlamaModel.dynamic_sdpa.clear_importance(cache_position[-1] + 1)
|
|
return output
|
|
cur_idx = 0
|
|
assert (
|
|
output_attentions == False
|
|
), "output_attentions is not supported when using chunked attention"
|
|
attn_output = None
|
|
# prefill
|
|
KLlamaModel.dynamic_sdpa.remaining_length = q_len
|
|
while cur_idx < q_len:
|
|
print(f'current prefill length: {cur_idx}')
|
|
chunk_mask = None
|
|
if inputs_embeds.device.type == 'cpu':
|
|
tmp_inputs_embeds = inputs_embeds[:, cur_idx : min(cur_idx + chunck_size, q_len)].to("cuda")
|
|
else:
|
|
tmp_inputs_embeds = inputs_embeds[:, cur_idx : min(cur_idx + chunck_size, q_len)]
|
|
output_with_past = self.forward_chunk(
|
|
tmp_inputs_embeds,
|
|
chunk_mask,
|
|
position_ids[:, cur_idx : min(cur_idx + chunck_size, q_len)],
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position[cur_idx : min(cur_idx + chunck_size, q_len)],
|
|
)
|
|
cur_output = output_with_past.last_hidden_state
|
|
KLlamaModel.dynamic_sdpa.remaining_length -= (
|
|
min(cur_idx + chunck_size, q_len) - cur_idx
|
|
)
|
|
cur_idx += chunck_size
|
|
# if attn_output is None:
|
|
attn_output = cur_output
|
|
# else:
|
|
# attn_output = torch.cat((attn_output, cur_output), dim=-2)
|
|
|
|
KLlamaModel.dynamic_sdpa.calc_anchor(cache_position[-1] + 1)
|
|
KLlamaModel.dynamic_sdpa.clear_importance(cache_position[-1] + 1)
|
|
return BaseModelOutputWithPast(last_hidden_state=attn_output)
|
|
|
|
def forward_chunk(
|
|
self,
|
|
inputs_embeds,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
):
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_legacy_cache = False
|
|
if use_cache and not isinstance(
|
|
past_key_values, Cache
|
|
): # kept for BC (non `Cache` `past_key_values` inputs)
|
|
return_legacy_cache = True
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# create position embeddings to be shared across the decoder layers
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
position_embeddings,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if return_legacy_cache:
|
|
next_cache = next_cache.to_legacy_cache()
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
def _update_causal_mask(
|
|
self,
|
|
attention_mask: torch.Tensor,
|
|
input_tensor: torch.Tensor,
|
|
cache_position: torch.Tensor,
|
|
past_key_values: Cache,
|
|
output_attentions: bool,
|
|
):
|
|
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
|
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
|
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
|
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
|
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
if attention_mask is not None and 0.0 in attention_mask:
|
|
return attention_mask
|
|
return None
|
|
|
|
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
|
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
|
# to infer the attention mask.
|
|
past_seen_tokens = (
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
)
|
|
using_static_cache = isinstance(past_key_values, StaticCache)
|
|
|
|
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and not using_static_cache
|
|
and not output_attentions
|
|
):
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
|
attention_mask,
|
|
inputs_embeds=input_tensor,
|
|
past_key_values_length=past_seen_tokens,
|
|
is_training=self.training,
|
|
):
|
|
return None
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device
|
|
min_dtype = torch.finfo(dtype).min
|
|
sequence_length = input_tensor.shape[1]
|
|
if using_static_cache:
|
|
target_length = past_key_values.get_max_length()
|
|
else:
|
|
target_length = (
|
|
attention_mask.shape[-1]
|
|
if isinstance(attention_mask, torch.Tensor)
|
|
else past_seen_tokens + sequence_length + 1
|
|
)
|
|
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
|
if attention_mask.max() != 0:
|
|
raise ValueError(
|
|
"Custom 4D attention mask should be passed in inverted form with max==0`"
|
|
)
|
|
causal_mask = attention_mask
|
|
else:
|
|
causal_mask = torch.full(
|
|
(sequence_length, target_length),
|
|
fill_value=min_dtype,
|
|
dtype=dtype,
|
|
device=device,
|
|
)
|
|
if sequence_length != 1:
|
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
causal_mask *= torch.arange(
|
|
target_length, device=device
|
|
) > cache_position.reshape(-1, 1)
|
|
causal_mask = causal_mask[None, None, :, :].expand(
|
|
input_tensor.shape[0], 1, -1, -1
|
|
)
|
|
if attention_mask is not None:
|
|
causal_mask = (
|
|
causal_mask.clone()
|
|
) # copy to contiguous memory for in-place edit
|
|
mask_length = attention_mask.shape[-1]
|
|
padding_mask = (
|
|
causal_mask[:, :, :, :mask_length]
|
|
+ attention_mask[:, None, None, :]
|
|
)
|
|
padding_mask = padding_mask == 0
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[
|
|
:, :, :, :mask_length
|
|
].masked_fill(padding_mask, min_dtype)
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and attention_mask is not None
|
|
and attention_mask.device.type == "cuda"
|
|
and not output_attentions
|
|
):
|
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(
|
|
causal_mask, min_dtype
|
|
)
|
|
|
|
return causal_mask
|