kvcache-ai-ktransformers/ktransformers/optimize/optimize_rules/xpu/Qwen3Moe-Chat.yaml
2025-05-22 21:01:41 +08:00

80 lines
2.7 KiB
YAML

- match:
name: "rotary_emb$"
replace:
class: ktransformers.operators.RoPE.KQwen3MoeRotaryEmbedding
kwargs:
generate_device: "xpu"
prefill_device: "xpu"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "xpu"
prefill_device: "xpu"
generate_op: "KLinearIPEXLLM"
prefill_op: "KLinearIPEXLLM"
- match:
name: "^model\\.layers\\.(?!.*mlp\\.gate).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "xpu"
prefill_device: "xpu"
generate_op: "KLinearIPEXLLM"
prefill_op: "KLinearIPEXLLM"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeSparseMoeBlock
replace:
class: ktransformers.operators.experts.KQwen3MoeSparseMoeBlockV2 # mlp module with custom forward function
kwargs:
generate_device: "xpu"
prefill_device: "xpu"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "xpu"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "xpu"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KQwen3MoeAttentionIPEXLLM
kwargs:
generate_device: "xpu"
prefill_device: "xpu"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KQwen2MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
class: transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeRMSNorm
replace:
class: ktransformers.operators.layernorm.KDeepseekRMSNormIPEXLLM
kwargs:
generate_device: "xpu"
prefill_device: "xpu"
- match:
class: transformers.models.qwen3_moe.modeling_qwen3_moe.Qwen3MoeMLP
replace:
class: ktransformers.operators.mlp.KQwen2MoeMLP
kwargs:
generate_device: "xpu"
prefill_device: "xpu"