mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-03 19:20:04 +00:00
734 lines
No EOL
20 KiB
YAML
734 lines
No EOL
20 KiB
YAML
- match:
|
||
name: "^model.embed_tokens"
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|
||
|
||
# === Rotary Embedding Replacement ===
|
||
|
||
# GPU 0: layers 0–7
|
||
- match:
|
||
name: "^model\\.layers\\.([0-7])\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
|
||
# GPU 1: layers 8–15
|
||
- match:
|
||
name: "^model\\.layers\\.(8|9|1[0-5])\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:1"
|
||
prefill_device: "cuda:1"
|
||
|
||
# GPU 2: layers 16–23
|
||
- match:
|
||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:2"
|
||
prefill_device: "cuda:2"
|
||
|
||
# GPU 3: layers 24–31
|
||
- match:
|
||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:3"
|
||
prefill_device: "cuda:3"
|
||
|
||
# GPU 4: layers 32–39
|
||
- match:
|
||
name: "^model\\.layers\\.([3][2-9])\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:4"
|
||
prefill_device: "cuda:4"
|
||
|
||
# GPU 5: layers 40–47
|
||
- match:
|
||
name: "^model\\.layers\\.(4[0-7])\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:5"
|
||
prefill_device: "cuda:5"
|
||
|
||
# GPU 6: layers 48–55
|
||
- match:
|
||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:6"
|
||
prefill_device: "cuda:6"
|
||
|
||
# GPU 7: layers 56–60
|
||
- match:
|
||
name: "^model\\.layers\\.(5[6-9]|60)\\."
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7"
|
||
|
||
|
||
# === Linear Layers Replacement (excluding self_attn.kv_b_proj) ===
|
||
|
||
# GPU 0: layers 0–7
|
||
- match:
|
||
name: "^model\\.layers\\.([0-7])\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# GPU 1: layers 8–15
|
||
- match:
|
||
name: "^model\\.layers\\.(8|9|1[0-5])\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:1"
|
||
prefill_device: "cuda:1"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# GPU 2: layers 16–23
|
||
- match:
|
||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:2"
|
||
prefill_device: "cuda:2"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# GPU 3: layers 24–31
|
||
- match:
|
||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:3"
|
||
prefill_device: "cuda:3"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# GPU 4: layers 32–39
|
||
- match:
|
||
name: "^model\\.layers\\.(3[2-9])\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:4"
|
||
prefill_device: "cuda:4"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# GPU 5: layers 40–47
|
||
- match:
|
||
name: "^model\\.layers\\.(4[0-7])\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:5"
|
||
prefill_device: "cuda:5"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# GPU 6: layers 48–55
|
||
- match:
|
||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:6"
|
||
prefill_device: "cuda:6"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# GPU 7: layers 56–63
|
||
- match:
|
||
name: "^model\\.layers\\.(5[6-9]|60)\\.(?!self_attn\\.kv_b_proj).*$"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
|
||
|
||
# === MLP (MoE) Replacement ===
|
||
|
||
# GPU 0: layers 0–7
|
||
- match:
|
||
name: "^model\\.layers\\.([0-7])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
|
||
# GPU 1: layers 8–15
|
||
- match:
|
||
name: "^model\\.layers\\.(8|9|1[0-5])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:1"
|
||
prefill_device: "cuda:1"
|
||
|
||
# GPU 2: layers 16–23
|
||
- match:
|
||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:2"
|
||
prefill_device: "cuda:2"
|
||
|
||
# GPU 3: layers 24–31
|
||
- match:
|
||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:3"
|
||
prefill_device: "cuda:3"
|
||
|
||
# GPU 4: layers 32–39
|
||
- match:
|
||
name: "^model\\.layers\\.(3[2-9])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:4"
|
||
prefill_device: "cuda:4"
|
||
|
||
# GPU 5: layers 40–47
|
||
- match:
|
||
name: "^model\\.layers\\.(4[0-7])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:5"
|
||
prefill_device: "cuda:5"
|
||
|
||
# GPU 6: layers 48–55
|
||
- match:
|
||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:6"
|
||
prefill_device: "cuda:6"
|
||
|
||
# GPU 7: layers 56–60
|
||
- match:
|
||
name: "^model\\.layers\\.(5[6-9]|60)\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7"
|
||
|
||
# === MLP Gate Replacement ===
|
||
|
||
# GPU 0: layers 0–7
|
||
- match:
|
||
name: "^model\\.layers\\.([0-7])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
|
||
# GPU 1: layers 8–15
|
||
- match:
|
||
name: "^model\\.layers\\.(8|9|1[0-5])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:1"
|
||
prefill_device: "cuda:1"
|
||
|
||
# GPU 2: layers 16–23
|
||
- match:
|
||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:2"
|
||
prefill_device: "cuda:2"
|
||
|
||
# GPU 3: layers 24–31
|
||
- match:
|
||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:3"
|
||
prefill_device: "cuda:3"
|
||
|
||
# GPU 4: layers 32–39
|
||
- match:
|
||
name: "^model\\.layers\\.(3[2-9])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:4"
|
||
prefill_device: "cuda:4"
|
||
|
||
# GPU 5: layers 40–47
|
||
- match:
|
||
name: "^model\\.layers\\.(4[0-7])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:5"
|
||
prefill_device: "cuda:5"
|
||
|
||
# GPU 6: layers 48–55
|
||
- match:
|
||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:6"
|
||
prefill_device: "cuda:6"
|
||
|
||
# GPU 7: layers 56–60
|
||
- match:
|
||
name: "^model\\.layers\\.(5[6-9]|60)\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7"
|
||
|
||
|
||
# === MLP Experts Replacement ===
|
||
# replace with marlin expert. Open and modify layer-num as needed.
|
||
# Each layer of malin experts takes about 6GB of GPU memory.
|
||
# !!!Do remember 'close' cuda graph if you are using marlin expert.!!!
|
||
# !!!Loading marlin expert will take signifcant time.!!!
|
||
|
||
# GPU 0: layers 0–7
|
||
# - match:
|
||
# name: "^model\\.layers\\.([0-7])\\.mlp\\.experts$" # inject experts in layer 0~4 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:0"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
# # GPU 1: layers 8–15
|
||
# - match:
|
||
# name: "^model\\.layers\\.([8-9]|1[0-5)\\.mlp\\.experts$" # inject experts in layer 30~31 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:1"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
# # GPU 2: layers 16–23
|
||
# - match:
|
||
# name: "^model\\.layers\\.(1[6-9]|2[0-3])\\.mlp\\.experts$" # inject experts in layer 0~4 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:0"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
# # GPU 3: layers 24–31
|
||
# - match:
|
||
# name: "^model\\.layers\\.(2[4-9]|3[0-1])\\.mlp\\.experts$" # inject experts in layer 30~31 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:1"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
# # GPU 4: layers 32–39
|
||
# - match:
|
||
# name: "^model\\.layers\\.(3[2-9])\\.mlp\\.experts$" # inject experts in layer 0~4 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:0"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
# # GPU 5: layers 40–47
|
||
# - match:
|
||
# name: "^model\\.layers\\.(4[0-7])\\.mlp\\.experts$" # inject experts in layer 30~31 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:1"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
# # GPU 6: layers 48–55
|
||
# - match:
|
||
# name: "^model\\.layers\\.(4[8-9]|5[0-5])\\.mlp\\.experts$" # inject experts in layer 0~4 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:0"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
# # GPU 7: layers 56–60
|
||
# - match:
|
||
# name: "^model\\.layers\\.(5[6-9]|60)\\.mlp\\.experts$" # inject experts in layer 30~31 as marlin expert
|
||
# replace:
|
||
# class: ktransformers.operators.experts.KTransformersExperts
|
||
# kwargs:
|
||
# generate_device: "cuda:1"
|
||
# generate_op: "KExpertsMarlin"
|
||
# recursive: False
|
||
|
||
|
||
# === MLP Experts Replacement ===
|
||
|
||
# GPU 0: layers 0–7
|
||
- match:
|
||
name: "^model\\.layers\\.([0-7])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:0"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:0"
|
||
recursive: False
|
||
|
||
# GPU 1: layers 8–15
|
||
- match:
|
||
name: "^model\\.layers\\.(8|9|1[0-5])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:1"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:1"
|
||
recursive: False
|
||
|
||
# GPU 2: layers 16–23
|
||
- match:
|
||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:2"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:2"
|
||
recursive: False
|
||
|
||
# GPU 3: layers 24–31
|
||
- match:
|
||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:3"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:3"
|
||
recursive: False
|
||
|
||
# GPU 4: layers 32–39
|
||
- match:
|
||
name: "^model\\.layers\\.(3[2-9])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:4"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:4"
|
||
recursive: False
|
||
|
||
# GPU 5: layers 40–47
|
||
- match:
|
||
name: "^model\\.layers\\.(4[0-7])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:5"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:5"
|
||
recursive: False
|
||
|
||
# GPU 6: layers 48–55
|
||
- match:
|
||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:6"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:6"
|
||
recursive: False
|
||
|
||
# GPU 7: layers 56–60
|
||
- match:
|
||
name: "^model\\.layers\\.(5[6-9]|60)\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts
|
||
kwargs:
|
||
prefill_device: "cuda:7"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:7"
|
||
recursive: False
|
||
|
||
|
||
# === Self-Attention Replacement ===
|
||
|
||
# GPU 0: layers 0–7
|
||
- match:
|
||
name: "^model\\.layers\\.([0-7])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
|
||
# GPU 1: layers 8–15
|
||
- match:
|
||
name: "^model\\.layers\\.(8|9|1[0-5])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:1"
|
||
prefill_device: "cuda:1"
|
||
|
||
# GPU 2: layers 16–23
|
||
- match:
|
||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:2"
|
||
prefill_device: "cuda:2"
|
||
|
||
# GPU 3: layers 24–31
|
||
- match:
|
||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:3"
|
||
prefill_device: "cuda:3"
|
||
|
||
# GPU 4: layers 32–39
|
||
- match:
|
||
name: "^model\\.layers\\.(3[2-9])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:4"
|
||
prefill_device: "cuda:4"
|
||
|
||
# GPU 5: layers 40–47
|
||
- match:
|
||
name: "^model\\.layers\\.(4[0-7])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:5"
|
||
prefill_device: "cuda:5"
|
||
|
||
# GPU 6: layers 48–55
|
||
- match:
|
||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:6"
|
||
prefill_device: "cuda:6"
|
||
|
||
# GPU 7: layers 56–60
|
||
- match:
|
||
name: "^model\\.layers\\.(5[6-9]|60)\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7"
|
||
|
||
# === Overall Model Replacement with Transfer Map ===
|
||
|
||
- match:
|
||
name: "^model$"
|
||
replace:
|
||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||
kwargs:
|
||
per_layer_prefill_intput_threshold: 0 # 0 means close layer‐wise prefill
|
||
transfer_map:
|
||
8: "cuda:1"
|
||
16: "cuda:2"
|
||
24: "cuda:3"
|
||
32: "cuda:4"
|
||
40: "cuda:5"
|
||
48: "cuda:6"
|
||
56: "cuda:7"
|
||
|
||
# === Default Catch-All for Other Modules ===
|
||
|
||
# GPU 0: layers 0–7
|
||
- match:
|
||
name: "^model\\.layers\\.([0-7])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
|
||
# GPU 1: layers 8–15
|
||
- match:
|
||
name: "^model\\.layers\\.(8|9|1[0-5])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:1"
|
||
prefill_device: "cuda:1"
|
||
|
||
# GPU 2: layers 16–23
|
||
- match:
|
||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:2"
|
||
prefill_device: "cuda:2"
|
||
|
||
# GPU 3: layers 24–31
|
||
- match:
|
||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:3"
|
||
prefill_device: "cuda:3"
|
||
|
||
# GPU 4: layers 32–39
|
||
- match:
|
||
name: "^model\\.layers\\.(3[2-9])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:4"
|
||
prefill_device: "cuda:4"
|
||
|
||
# GPU 5: layers 40–47
|
||
- match:
|
||
name: "^model\\.layers\\.(4[0-7])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:5"
|
||
prefill_device: "cuda:5"
|
||
|
||
# GPU 6: layers 48–55
|
||
- match:
|
||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:6"
|
||
prefill_device: "cuda:6"
|
||
|
||
# GPU 7: layers 56–63
|
||
- match:
|
||
name: "^model\\.layers\\.(5[6-9]|60)\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7"
|
||
|
||
- match:
|
||
name: "^lm_head"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# For final modules (model.norm), ensure they are on GPU 7 (as in your original config)
|
||
- match:
|
||
name: "(^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.)|(^model\\.norm)"
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:7"
|
||
prefill_device: "cuda:7" |