mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-03 19:20:04 +00:00
184 lines
5.4 KiB
YAML
184 lines
5.4 KiB
YAML
- match:
|
||
name: "^model.embed_tokens"
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|
||
|
||
# === Rotary Embedding Replacement ===
|
||
|
||
# GPU 0: layers 0–9
|
||
- match:
|
||
name: "^model\\.layers\\.(0|[1-9])\\."
|
||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
# CPU: layers 10-29
|
||
- match:
|
||
name: "^model\\.layers\\.([12][0-9])\\."
|
||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||
replace:
|
||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|
||
|
||
# === Linear Layers Replacement (excluding self_attn) ===
|
||
|
||
# GPU 0: layers 0–9
|
||
- match:
|
||
name: "^model\\.layers\\.(0|[1-9])\\.(?!self_attn).*$" # regular expression
|
||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
# CPU: layers 10-29
|
||
- match:
|
||
name: "^model\\.layers\\.([12][0-9])\\.(?!self_attn).*$" # regular expression
|
||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|
||
generate_op: "KLinearCPUInfer"
|
||
prefill_op: "KLinearTorch"
|
||
out_device: "cpu"
|
||
|
||
# === MLP (MoE) Replacement ===
|
||
|
||
# GPU 0: layers 0–9
|
||
- match:
|
||
name: "^model\\.layers\\.(0|[1-9])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
# CPU: layers 10-29
|
||
- match:
|
||
name: "^model\\.layers\\.([12][0-9])\\.mlp$"
|
||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||
replace:
|
||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|
||
|
||
# === MLP Gate Replacement ===
|
||
|
||
# GPU 0: layers 0–9
|
||
- match:
|
||
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
# CPU: layers 10-29
|
||
- match:
|
||
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.gate$"
|
||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||
replace:
|
||
class: ktransformers.operators.gate.KMoEGate
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|
||
|
||
# === MLP Experts Replacement ===
|
||
|
||
# GPU 0: layers 0–9
|
||
- match:
|
||
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||
kwargs:
|
||
prefill_device: "cuda:0"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cuda:0"
|
||
recursive: False # don't recursively inject submodules of this module
|
||
# CPU: layers 10-29
|
||
- match:
|
||
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.experts$"
|
||
replace:
|
||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||
kwargs:
|
||
prefill_device: "cpu"
|
||
prefill_op: "KExpertsTorch"
|
||
generate_device: "cpu"
|
||
generate_op: "KExpertsCPU"
|
||
out_device: "cpu"
|
||
recursive: False # don't recursively inject submodules of this module
|
||
|
||
# === Self-Attention Replacement ===
|
||
|
||
# GPU 0: layers 0–9
|
||
- match:
|
||
name: "^model\\.layers\\.(0|[1-9])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
# CPU: layers 10-29
|
||
- match:
|
||
name: "^model\\.layers\\.([12][0-9])\\.self_attn$"
|
||
replace:
|
||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|
||
|
||
# === Overall Model Replacement with Transfer Map ===
|
||
|
||
- match:
|
||
name: "^model$"
|
||
replace:
|
||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||
kwargs:
|
||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||
transfer_map:
|
||
10: "cpu"
|
||
|
||
# === Default Catch-All for Other Modules ===#
|
||
# GPU 0: layers 0–9
|
||
- match:
|
||
name: "^model\\.layers\\.(0|[1-9])\\."
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
|
||
#lmm_head on GPU 0
|
||
- match:
|
||
name: "^lm_head"
|
||
class: torch.nn.Linear
|
||
replace:
|
||
class: ktransformers.operators.linear.KTransformersLinear
|
||
kwargs:
|
||
generate_device: "cuda:0"
|
||
prefill_device: "cuda:0"
|
||
generate_op: "KLinearMarlin"
|
||
prefill_op: "KLinearTorch"
|
||
|
||
# CPU: layers 10-29
|
||
- match:
|
||
name: "(^model\\.layers\\.([12][0-9])\\.)|(model.norm)"
|
||
replace:
|
||
class: "default"
|
||
kwargs:
|
||
generate_device: "cpu"
|
||
prefill_device: "cpu"
|