- match: name: "^model\\.layers\\..*\\." replace: class: "default" kwargs: generate_device: "cuda" prefill_device: "cuda" - match: class: ktransformers.models.modeling_mixtral.MixtralRotaryEmbedding replace: class: ktransformers.operators.RoPE.RotaryEmbedding - match: name: "^model\\.layers\\..*$" class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda" prefill_device: "cuda" generate_op: "QuantizedLinearMarlin" prefill_op: "QuantizedLinearTorch" - match: name: "^model\\.layers\\..*\\.block_sparse_moe$" class: ktransformers.models.modeling_mixtral.MixtralSparseMoeBlock replace: class: ktransformers.operators.experts.MisrtalSparseMoEBlockInjected - match: name: "^model\\.layers\\..*\\.block_sparse_moe\\.experts$" replace: class: ktransformers.operators.experts.KTransformersMLPExpert kwargs: prefill_device: "cuda" prefill_mlp_type: "MLPExpertsTorch" generate_device: "cpu" generate_mlp_type: "MLPCPUExperts" out_device: "cuda" recursive: False # don't recursively inject submodules of this module - match: name: "^model.embed_tokens" replace: class: "default" kwargs: generate_device: "cpu" prefill_device: "cpu"