''' Date: 2024-11-13 15:05:52 LastEditors: Xie Weiyu ervinxie@qq.com LastEditTime: 2024-11-25 08:59:19 ''' """ Copyright 2023-2024 SGLang Team Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """Fused operators for normalization layers.""" import logging from typing import Optional, Tuple, Union from transformers import PretrainedConfig import torch import torch.nn as nn from ktransformers.models.modeling_deepseek_v3 import DeepseekV3RMSNorm from ktransformers.models.modeling_qwen2_moe import Qwen2MoeRMSNorm from ktransformers.models.modeling_qwen3_moe import Qwen3MoeRMSNorm from ktransformers.operators.base_operator import BaseInjectedModule from ktransformers.util.custom_loader import GGUFLoader if not torch.xpu.is_available(): from flashinfer.norm import ( fused_add_rmsnorm, rmsnorm, ) logger = logging.getLogger(__name__) class RMSNorm(DeepseekV3RMSNorm, BaseInjectedModule): def __init__(self, key: str, gguf_loader : GGUFLoader, config: PretrainedConfig, orig_module: nn.Module, prefill_device: str = "cuda", generate_device: str = "cuda", **kwargs): BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs) self.orig_module.__init__(orig_module.hidden_size, orig_module.variance_epsilon) def forward( self, x: torch.Tensor, batch_size_tensor: torch.Tensor = None, residual: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: #return self.forward_native(x, residual) if batch_size_tensor is None: return self.forward_native(x) if residual is not None: fused_add_rmsnorm(x, residual, self.weight.data, batch_size_tensor, self.variance_epsilon) #residual = x + residual #out = rmsnorm(residual, self.weight.data, batch_size_tensor, self.variance_epsilon) return x, residual # print(x.shape, self.weight.data.shape, self.variance_epsilon, x.dtype, self.weight.data.dtype, x.device, self.weight.device, x.is_contiguous(), self.weight.data.is_contiguous()) out = rmsnorm(x, self.weight.data, batch_size_tensor,self.variance_epsilon) return out def forward_native( self, hidden_states ): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class KQwen2MoeRMSNorm(Qwen2MoeRMSNorm, BaseInjectedModule): def __init__(self, key: str, gguf_loader : GGUFLoader, config: PretrainedConfig, orig_module: nn.Module, prefill_device: str = "cuda", generate_device: str = "cuda", **kwargs): BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs) self.orig_module.__init__(config.hidden_size, orig_module.variance_epsilon) def forward( self, x: torch.Tensor, batch_size_tensor: torch.Tensor = None, residual: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: #return self.forward_native(x, residual) if batch_size_tensor is None: return self.forward_native(x) if residual is not None: fused_add_rmsnorm(x, residual, self.weight.data, batch_size_tensor, self.variance_epsilon) #residual = x + residual #out = rmsnorm(residual, self.weight.data, batch_size_tensor, self.variance_epsilon) return x, residual # print(x.shape, self.weight.data.shape, self.variance_epsilon, x.dtype, self.weight.data.dtype, x.device, self.weight.device, x.is_contiguous(), self.weight.data.is_contiguous()) out = rmsnorm(x, self.weight.data, batch_size_tensor,self.variance_epsilon) return out def forward_native( self, hidden_states ): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class KQwen3MoeRMSNorm(Qwen3MoeRMSNorm, BaseInjectedModule): def __init__(self, key: str, gguf_loader : GGUFLoader, config: PretrainedConfig, orig_module: nn.Module, prefill_device: str = "cuda", generate_device: str = "cuda", **kwargs): BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs) self.orig_module.__init__(orig_module.hidden_size, orig_module.variance_epsilon) def forward( self, x: torch.Tensor, batch_size_tensor: torch.Tensor = None, residual: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: #return self.forward_native(x, residual) bsz, hidden_size = x.shape x = x.view(-1, self.orig_module.hidden_size) if batch_size_tensor is None: return self.forward_native(x) if residual is not None: fused_add_rmsnorm(x, residual, self.weight.data, batch_size_tensor, self.variance_epsilon) #residual = x + residual #out = rmsnorm(residual, self.weight.data, batch_size_tensor, self.variance_epsilon) return x, residual # print(x.shape, self.weight.data.shape, self.variance_epsilon, x.dtype, self.weight.data.dtype, x.device, self.weight.device, x.is_contiguous(), self.weight.data.is_contiguous()) out = rmsnorm(x, self.weight.data, batch_size_tensor,self.variance_epsilon) out = out.view(bsz, hidden_size) return out def forward_native( self, hidden_states ): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) class DeepseekV3RMSNormTorch(DeepseekV3RMSNorm, BaseInjectedModule): def __init__(self, key: str, gguf_loader : GGUFLoader, config: PretrainedConfig, orig_module: nn.Module, prefill_device: str = "cuda", generate_device: str = "cuda", **kwargs): BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs) self.orig_module.__init__(orig_module.hidden_size, orig_module.variance_epsilon) def forward( self, x, batch_size_tensor: torch.Tensor = None, residual: Optional[torch.Tensor] = None, )-> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: if residual is not None: x = x + residual residual = x # range batch_size_tensor for x input_dtype = x.dtype x = x.to(torch.float32) variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.variance_epsilon) if residual is not None: return self.weight * x.to(input_dtype), residual return self.weight * x.to(input_dtype) class KDeepseekRMSNormIPEXLLM(DeepseekV3RMSNorm, BaseInjectedModule): def __init__(self, key: str, gguf_loader : GGUFLoader, config: PretrainedConfig, orig_module: nn.Module, prefill_device: str = "xpu", generate_device: str = "xpu", **kwargs): BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs) self.orig_module.__init__(orig_module.hidden_size, orig_module.variance_epsilon) self.eps = orig_module.variance_epsilon def forward(self, x: torch.Tensor) -> torch.Tensor: from ipex_llm.transformers.models.common import rms_norm_forward output = rms_norm_forward(self, x.float()) return output.to(x.dtype) def load(self): BaseInjectedModule.load(self) if self.weight.dtype != torch.float32: self.weight = self.weight.float()