#!/usr/bin/env python # coding=utf-8 ''' Description : Author : Boxin Zhang, Azure-Tang Version : 0.1.0 Copyright (c) 2024 by KVCache.AI, All Rights Reserved. ''' import torch from torch import nn import itertools import time import enum from ktransformers.util.custom_gguf import translate_name_to_gguf from ktransformers.util.custom_gguf import GGUFLoader from ktransformers.operators import base_operator from ktransformers.models.custom_cache import StaticCache from ktransformers.util.cuda_graph_runner import CUDAGraphRunner from ktransformers.util.textstream import TextStreamer from ktransformers.operators.flashinfer_wrapper import MLAWrapperSingleton warm_uped = False def get_compute_capability(device:torch.device = None): if torch.cuda.is_available(): if device is None: num_gpus = torch.cuda.device_count() min_compute_capability_major = 100 for gpu_id in range(num_gpus): gpu_props = torch.cuda.get_device_properties(gpu_id) min_compute_capability_major = min(min_compute_capability_major, gpu_props.major) return min_compute_capability_major else: return torch.cuda.get_device_properties(device) def set_module(model, submodule_key, module): tokens = submodule_key.split('.') sub_tokens = tokens[:-1] cur_mod = model for s in sub_tokens: if hasattr(cur_mod, s): cur_mod = getattr(cur_mod, s) else: # nn.ModuleList or nn.ModuleList cur_mod=cur_mod[int(s)] if hasattr(cur_mod, tokens[-1]): setattr(cur_mod, tokens[-1], module) else: # nn.ModuleList or nn.ModuleList cur_mod[int(tokens[-1])] = module def set_param(module: nn.Module, name: str, weights: torch.Tensor): param=nn.parameter.Parameter(weights, requires_grad=False) if isinstance(module, nn.Linear) and len(weights.shape)==1: param.unsqueeze_(0) setattr(module, name, param) def get_device(gguf_module_key:str, device_map:dict): if gguf_module_key in device_map: return device_map[gguf_module_key]["generate_device"] else: return "cuda" def get_all_used_cuda_device(device_map:dict): all_device_list = set() for key in device_map: all_device_list.add(device_map[key]["generate_device"]) if "generate_device" in device_map[key] else None all_device_list.add(device_map[key]["prefill_device"]) if "prefill_device" in device_map[key] else None if "cpu" in all_device_list: all_device_list.remove("cpu") all_device_list = list(all_device_list) return all_device_list def load_cur_state_dict(module: nn.Module, gguf_loader: GGUFLoader, prefix: str = ""): prefix = prefix.replace("orig_module.", "") persistent_buffers = {k: v for k, v in module._buffers.items() if k not in module._non_persistent_buffers_set} local_name_params = itertools.chain(module._parameters.items(), persistent_buffers.items()) local_state = {k: v for k, v in local_name_params if v is not None} for name, param in local_state.items(): key = prefix + name translated_key = translate_name_to_gguf(key) # TODO: Merge all loader. # I know this is ugly but lets do it for now. if gguf_loader.safetensor_loader is not None: load_dequantized_tensor = gguf_loader.safetensor_loader.load_dequantized_tensor tensor_file_map = gguf_loader.safetensor_loader.tensor_file_map else: load_dequantized_tensor = gguf_loader.load_gguf_tensor tensor_file_map = gguf_loader.tensor_file_map if translated_key in tensor_file_map: target_dtype = torch.get_default_dtype() device = get_device(translated_key[:translated_key.rfind(".")], gguf_loader.tensor_device_map) print(f"loading {translated_key} to {device}") torch.cuda.empty_cache() weights = load_dequantized_tensor(translated_key, device=device).to(dtype=target_dtype) set_param(module, name, weights) del weights else: #print(load_config.tensor_file_map.keys()) raise Exception(f"can't find {translated_key} in GGUF file!") def load_weights(module:nn.Module, gguf_loader:GGUFLoader, prefix=''): #print(f"recursively loading weights {prefix}") if not isinstance(module, base_operator.BaseInjectedModule): load_cur_state_dict(module, gguf_loader, prefix) for name, child in module._modules.items(): load_weights(child, gguf_loader, prefix+name+".") else: module.load() def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000, use_cuda_graph: bool = True, mode = 'normal', force_think: bool = False, chunk_prefill_size = 16384, use_flashinfer_mla = False, num_heads = None, head_dim_ckv = None, head_dim_kpe = None, q_head_dim = None): import os os.environ["TOKENIZERS_PARALLELISM"] = "false" torch._dynamo.config.suppress_errors = True batch_size, seq_length = inputs.shape device_map = model.gguf_loader.tensor_device_map torch_device = get_device('blk.0.self_attn', device_map) torch_device = "cuda:0" if torch_device == "cuda" else torch_device inputs = inputs.to(torch_device) all_cuda_device = get_all_used_cuda_device(device_map) tokens = [] def decode_one_tokens(cuda_graph_runner, cur_token, position_ids, cache_position, past_key_values, logits_warper, generation_config, use_cuda_graph: bool = True): if cuda_graph_runner is None: use_cuda_graph = False if use_cuda_graph: logits = cuda_graph_runner(cur_token, position_ids, cache_position) else: # custom_stream = torch.cuda.Stream() torch.cuda.set_device(torch_device) inputs_embeds = model.model.embed_tokens(cur_token.to("cpu")).to(torch_device) # with torch.cuda.stream(custom_stream): logits=model(inputs_embeds=inputs_embeds, position_ids=position_ids, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True)[0] if past_key_values != None: past_key_values.change_seq_length(1) for device in all_cuda_device: torch.cuda.synchronize(device) #print(logits) next_token_scores = logits_warper(inputs, logits[:, -1, :]) if generation_config.do_sample: probs = nn.functional.softmax(next_token_scores, dim=-1) next_token = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_token = torch.argmax(next_token_scores, dim=-1) return next_token # TODO: use CUDA Graph for chunk prefill, may get small improvement def chunk_prefill(inputs, cache_position, past_key_values): if mode == "long_context": inputs_embeds = model.model.embed_tokens(inputs.to("cpu")) else: inputs_embeds = model.model.embed_tokens(inputs.to("cpu")).to(torch_device) if use_flashinfer_mla: MLAWrapperSingleton.update_buffer(past_key_values.max_pages) MLAWrapperSingleton.need_plan_all() logits = model( inputs_embeds = inputs_embeds, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True )[0][:,-1,:].unsqueeze(0).clone().to(torch_device) return logits torch.cuda.set_device(torch_device) with torch.no_grad(): stream = TextStreamer(tokenizer) if mode != 'long_context': past_key_values = StaticCache( config = model.config, max_batch_size = 1, max_cache_len = seq_length + max_new_tokens, device = device_map, dtype = model.dtype ) else: past_key_values = None generation_config, model_kwargs = model._prepare_generation_config( None, do_sample=True # change this to modify generate config #top_k=5, top_p=0.85, temperature=0.1 ) try: # transformers==4.43 logits_warper = ( model._get_logits_warper(generation_config,device=inputs.device) ) except: logits_warper = ( model._get_logits_warper(generation_config) ) cache_position = torch.arange(seq_length, device=torch_device, dtype=torch.int32) generated_ids = torch.zeros( batch_size, seq_length + max_new_tokens + 1, dtype=torch.int, device=torch_device ) generated_ids[:, cache_position] = inputs.to(torch_device).to(torch.int) start_time = time.time() chunk_start = 0 while chunk_start < seq_length: chunk_end = min(chunk_start + chunk_prefill_size, seq_length) if past_key_values != None: past_key_values.cur_idx=cache_position[chunk_start:chunk_end] logits = chunk_prefill(inputs[:, chunk_start:chunk_end], cache_position[chunk_start:chunk_end], past_key_values) chunk_start += chunk_prefill_size next_token_scores = logits_warper(inputs, logits[:, -1, :]) if generation_config.do_sample: probs = nn.functional.softmax(next_token_scores, dim=-1) next_token = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_token = torch.argmax(next_token_scores, dim=-1) first_token_time = time.time() - start_time if use_flashinfer_mla: MLAWrapperSingleton.reset_buffer() prefill_count = seq_length prefill_time = first_token_time if force_think: print("") print(stream.put(next_token.item()), end="", flush=True) generated_ids[:, seq_length] = next_token tokens.append(int(next_token)) inputs = torch.cat((inputs, next_token.unsqueeze(0)), dim=-1) cache_position = torch.tensor([seq_length], device=torch_device, dtype=torch.int32) position_ids = cache_position.unsqueeze(0) seq_length += 1 cuda_graph_runner = None start_time = time.time() for i in range(1, max_new_tokens): if use_flashinfer_mla: MLAWrapperSingleton.plan_all(None,None,None,position_ids.squeeze(1)+1, num_heads, head_dim_ckv, head_dim_kpe, past_key_values.page_size, q_head_dim ** (-0.5), torch.bfloat16, torch.bfloat16) global warm_uped if use_cuda_graph and ( (warm_uped == True and int(i) == 1) or (warm_uped == False and int(i) == 2) ): warm_uped = True cuda_graph_runner = CUDAGraphRunner() cuda_graph_runner.capture(model, next_token.unsqueeze(0), position_ids, cache_position, past_key_values, torch_device, return_dict=False, use_cache=True) next_token = decode_one_tokens(cuda_graph_runner, next_token.unsqueeze(0), position_ids, cache_position, past_key_values, logits_warper, generation_config, use_cuda_graph).to(torch_device) inputs = torch.cat((inputs, next_token.unsqueeze(0)), dim=-1) generated_ids[:, cache_position] = next_token.int() tokens.append(int(next_token)) seq_length += 1 if next_token[0].item() == tokenizer.eos_token_id or tokenizer.decode(next_token.tolist()) == '<|im_end|>': print(stream.end(), end="", flush=True) break else: print(stream.put(next_token.item()), end="", flush=True) cache_position += 1 position_ids = cache_position.unsqueeze(0) total_time = time.time() - start_time tokens_generated = len(tokens) tokens_per_second = tokens_generated / total_time print("") print(f"prompt eval count: {prefill_count} token(s)") print(f"prompt eval duration: {prefill_time}s") print(f"prompt eval rate: {prefill_count/prefill_time} tokens/s") print(f"eval count: {tokens_generated} token(s)") print(f"eval duration: {total_time}s") print(f"eval rate: {tokens_per_second} tokens/s") return tokens class InferenceState(enum.Enum): UNLOAD = 0 PREFILL = 1 GENERATE = 2 RESTORE = 3