""" Description : Author : Boxin Zhang, Azure-Tang Version : 0.1.0 Copyright (c) 2024 by KVCache.AI, All Rights Reserved. """ import os import platform import sys project_dir = os.path.dirname(os.path.dirname(__file__)) sys.path.insert(0, project_dir) import torch import logging from transformers import ( AutoTokenizer, AutoConfig, AutoModelForCausalLM, GenerationConfig, TextStreamer, ) import json import fire from ktransformers.optimize.optimize import optimize_and_load_gguf from ktransformers.models.modeling_deepseek import DeepseekV2ForCausalLM from ktransformers.models.modeling_qwen2_moe import Qwen2MoeForCausalLM from ktransformers.models.modeling_deepseek_v3 import DeepseekV3ForCausalLM from ktransformers.models.modeling_llama import LlamaForCausalLM from ktransformers.models.modeling_mixtral import MixtralForCausalLM from ktransformers.util.utils import prefill_and_generate, get_compute_capability from ktransformers.server.config.config import Config from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled from ktransformers.util.vendors import device_manager, get_device, to_device, GPUVendor custom_models = { "DeepseekV2ForCausalLM": DeepseekV2ForCausalLM, "DeepseekV3ForCausalLM": DeepseekV3ForCausalLM, "Qwen2MoeForCausalLM": Qwen2MoeForCausalLM, "LlamaForCausalLM": LlamaForCausalLM, "MixtralForCausalLM": MixtralForCausalLM, } ktransformer_rules_dir = ( os.path.dirname(os.path.abspath(__file__)) + "/optimize/optimize_rules/" ) default_optimize_rules = { "DeepseekV2ForCausalLM": ktransformer_rules_dir + "DeepSeek-V2-Chat.yaml", "DeepseekV3ForCausalLM": ktransformer_rules_dir + "DeepSeek-V3-Chat.yaml", "Qwen2MoeForCausalLM": ktransformer_rules_dir + "Qwen2-57B-A14B-Instruct.yaml", "LlamaForCausalLM": ktransformer_rules_dir + "Internlm2_5-7b-Chat-1m.yaml", "MixtralForCausalLM": ktransformer_rules_dir + "Mixtral.yaml", } def local_chat( model_path: str | None = None, optimize_config_path: str = None, gguf_path: str | None = None, max_new_tokens: int = 1000, cpu_infer: int = Config().cpu_infer, use_cuda_graph: bool = True, prompt_file : str | None = None, mode: str = "normal", force_think: bool = False, chunk_prefill_size: int = 8192 ): torch.set_grad_enabled(False) Config().cpu_infer = cpu_infer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) if mode == 'long_context': assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode" torch.set_default_dtype(torch.float16) else: torch.set_default_dtype(config.torch_dtype) with torch.device("meta"): if config.architectures[0] in custom_models: print("using custom modeling_xxx.py.") if ( "Qwen2Moe" in config.architectures[0] ): # Qwen2Moe must use flash_attention_2 to avoid overflow. config._attn_implementation = "flash_attention_2" if "Llama" in config.architectures[0]: config._attn_implementation = "eager" if "Mixtral" in config.architectures[0]: config._attn_implementation = "flash_attention_2" model = custom_models[config.architectures[0]](config) else: model = AutoModelForCausalLM.from_config( config, trust_remote_code=True, attn_implementation="flash_attention_2" ) if optimize_config_path is None: if config.architectures[0] in default_optimize_rules: print("using default_optimize_rule for", config.architectures[0]) optimize_config_path = default_optimize_rules[config.architectures[0]] else: optimize_config_path = input( "please input the path of your rule file(yaml file containing optimize rules):" ) if gguf_path is None: gguf_path = input( "please input the path of your gguf file(gguf file in the dir containing input gguf file must all belong to current model):" ) optimize_and_load_gguf(model, optimize_config_path, gguf_path, config) try: model.generation_config = GenerationConfig.from_pretrained(model_path) except Exception as e: print(f"generation config can't auto create, make default. Message: {e}") gen_config = GenerationConfig( temperature=0.6, top_p=0.95, do_sample=True ) model.generation_config = gen_config # model.generation_config = GenerationConfig.from_pretrained(model_path) if model.generation_config.pad_token_id is None: model.generation_config.pad_token_id = model.generation_config.eos_token_id model.eval() logging.basicConfig(level=logging.INFO) system = platform.system() if system == "Windows": os.system("cls") else: os.system("clear") while True: content = input("Chat: ") if content.startswith('"""'): # prefix """ # multi lines input content = content[3:] + "\n" while True: line = input("") if line.endswith('"""'): # end multi lines input line = line[:-3] # suffix """ if line: content += line + "\n" break else: content += line + "\n" if content == "": if prompt_file != None: content = open(prompt_file, "r").read() else: content = "Please write a piece of quicksort code in C++." elif os.path.isfile(content): content = open(content, "r").read() messages = [{"role": "user", "content": content}] input_tensor = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ) if force_think: token_thinks = torch.tensor([tokenizer.encode("\\n",add_special_tokens=False)],device=input_tensor.device) input_tensor = torch.cat( [input_tensor, token_thinks], dim=1 ) if mode == 'long_context': assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \ "please change max_seq_len in ~/.ktransformers/config.yaml" if system != "Windows" and (config.architectures[0] == "DeepseekV2ForCausalLM" or config.architectures[0] == "DeepseekV3ForCausalLM") and flashinfer_enabled and get_compute_capability() >= 8 and device_manager.gpu_vendor == GPUVendor.NVIDIA: generated = prefill_and_generate( model, tokenizer, input_tensor.cuda(), max_new_tokens, use_cuda_graph, mode = mode, force_think = force_think, chunk_prefill_size = chunk_prefill_size, use_flashinfer_mla = True, num_heads = config.num_attention_heads, head_dim_ckv = config.kv_lora_rank, head_dim_kpe = config.qk_rope_head_dim, q_head_dim = config.qk_rope_head_dim + config.qk_nope_head_dim ) else: generated = prefill_and_generate( model, tokenizer, input_tensor.cuda(), max_new_tokens, use_cuda_graph, mode = mode, force_think = force_think, chunk_prefill_size = chunk_prefill_size, ) if __name__ == "__main__": fire.Fire(local_chat)