#!/usr/bin/env python # coding=utf-8 ''' Description : Author : chenht2022 Date : 2024-07-25 10:32:05 Version : 1.0.0 LastEditors : chenht2022 LastEditTime : 2024-08-06 10:37:28 Copyright (c) 2024 by KVCache.AI, All Rights Reserved. ''' import os, sys import time sys.path.append(os.path.dirname(__file__) + '/../build') import cpuinfer_ext import torch hidden_size = 5120 intermediate_size = 3072 stride = 32 group_max_len = 1024 gate_type = 1 # ggml_type::GGML_TYPE_F16 up_type = 1 # ggml_type::GGML_TYPE_F16 down_type = 1 # ggml_type::GGML_TYPE_F16 hidden_type = 1 # ggml_type::GGML_TYPE_F16 qlen = 30 layer_num = 10 CPUInfer = cpuinfer_ext.CPUInfer(48) validation_iter = 100 def act_fn(x): return x / (1.0 + torch.exp(-x)) def mlp_torch(input, gate_proj, up_proj, down_proj): gate_buf = torch.mm(input, gate_proj.t()) up_buf = torch.mm(input, up_proj.t()) intermediate = act_fn(gate_buf) * up_buf ret = torch.mm(intermediate, down_proj.t()) return ret with torch.inference_mode(mode=True): mlps = [] gate_projs = [] up_projs = [] down_projs = [] for _ in range(layer_num): gate_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() up_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() down_proj = torch.randn((hidden_size, intermediate_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type) mlp = cpuinfer_ext.mlp.MLP(config) gate_projs.append(gate_proj) up_projs.append(up_proj) down_projs.append(down_proj) mlps.append(mlp) # validation for i in range(validation_iter): mlp = mlps[i % layer_num] input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous() output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous() input = input / 100 CPUInfer.submit( mlp.forward( qlen, input.data_ptr(), output.data_ptr() ) ) CPUInfer.sync() # print('cpuinfer output', output) gate_proj = gate_projs[i%layer_num] up_proj = up_projs[i%layer_num] down_proj = down_projs[i%layer_num] t_output = mlp_torch(input, gate_proj, up_proj, down_proj) # print('torch output', t_output) diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output)) print('diff = ', diff) assert(diff < 0.001)