#!/usr/bin/env python # coding=utf-8 ''' Description : Author : chenht2022 Date : 2024-07-25 10:32:05 Version : 1.0.0 LastEditors : chenht2022 LastEditTime : 2024-08-06 10:36:59 Copyright (c) 2024 by KVCache.AI, All Rights Reserved. ''' import os, sys import time sys.path.append(os.path.dirname(__file__) + '/../build') import cpuinfer_ext import torch input_size = 16384 output_size = 5120 stride = 32 group_max_len = 1024 proj_type = 1 # ggml_type::GGML_TYPE_F16 hidden_type = 1 # ggml_type::GGML_TYPE_F16 qlen = 30 layer_num = 10 CPUInfer = cpuinfer_ext.CPUInfer(48) validation_iter = 100 with torch.inference_mode(mode=True): linears = [] projs = [] for _ in range(layer_num): proj = torch.randn((output_size, input_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous() config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, group_max_len, proj.data_ptr(), proj_type, hidden_type) linear = cpuinfer_ext.linear.Linear(config) projs.append(proj) linears.append(linear) # validation for i in range(validation_iter): linear = linears[i % layer_num] input = torch.randn((qlen, input_size), dtype=torch.float16).contiguous() output = torch.empty((qlen, output_size), dtype=torch.float16).contiguous() input = input / 100 CPUInfer.submit( linear.forward( qlen, input.data_ptr(), output.data_ptr() ) ) CPUInfer.sync() # print('cpuinfer output', output) proj = projs[i%layer_num] t_output = torch.mm(input, proj.t()) # print('torch output', t_output) diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output)) print('diff = ', diff) assert(diff < 0.001)