import os # os.environ["CUDA_VISIBLE_DEVICES"]="1,2" # add path import sys current_path = os.path.abspath(os.path.dirname(__file__)) sys.path.append(current_path+"/../..") import numpy as np # from ktransformers.operators.linear import KTransformersLinear, KLinearMarlin # from ktransformers.operators.experts import KTransformersExperts, KExpertsTorch from ktransformers.util.custom_loader import GGUFLoader import torch import KTransformersOps torch.set_default_dtype(torch.bfloat16) import time from transformers import ( AutoConfig, ) import os # CUDA_LAUNCH_BLOCKING=1 os.environ["CUDA_LAUNCH_BLOCKING"]="1" gguf_config = GGUFLoader("/data/Qwen2-57B-A14B-Instruct-GGUF/q4_k_m") model_name = "/data/Qwen2-57B-A14B-Instruct" # Q4k key = "blk.1." target = "attn_q.weight" t1 = time.time() q_weight_cpu = gguf_config.load_gguf_tensor(key+target, "cpu") # q_weight_cpu = torch.from_numpy(q_weight_cpu) t2 = time.time() q_weight_gpu = gguf_config.load_gguf_tensor(key+target, "cuda:0") t3 = time.time() print() allclose = torch.allclose(q_weight_cpu, q_weight_gpu.cpu(), atol=1e-6) print(f"Q4k {key+target}") print("load gguf tensor from cpu cost: ", t2-t1) print("load gguf tensor from gpu cost: ", t3-t2) print("allclose: ", allclose) # Q6k key = "blk.0." target = "ffn_down_exps.weight" t1 = time.time() q_weight_cpu = gguf_config.load_gguf_tensor(key+target, "cpu") t2 = time.time() q_weight_gpu = gguf_config.load_gguf_tensor(key+target, "cuda:0") t3 = time.time() print() allclose = torch.allclose(q_weight_cpu, q_weight_gpu.cpu().to(torch.float32), atol=1e-6) print(f"Q6k {key+target}") print("load gguf tensor from cpu cost: ", t2-t1) print("load gguf tensor from gpu cost: ", t3-t2) print("allclose: ", allclose)