- match: class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding replace: class: ktransformers.operators.RoPE.YarnRotaryEmbedding kwargs: generate_device: "cuda" prefill_device: "cuda" #- match: # name: "^model\\.layers\\.([1-5][0-9])\\.mlp\\.shared_experts.*$" # regular expression # class: torch.nn.Linear # only match modules matching name and class simultaneously # replace: # class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types # kwargs: # generate_device: "cpu" # prefill_device: "cuda" # generate_op: "KLinearCPUInfer" # prefill_op: "KLinearTorch" # out_device: "cuda" - match: name: "^model\\.layers\\.(?!.*self_attn).*$" # regular expression class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda" prefill_device: "cuda" generate_op: "KLinearMarlin" prefill_op: "KLinearTorch" - match: name: "^model\\.layers\\..*\\.mlp$" class: ktransformers.models.modeling_deepseek.DeepseekV2MoE replace: class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^model\\.layers\\..*\\.mlp\\.experts$" replace: class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism kwargs: prefill_device: "cuda" prefill_op: "KExpertsTorch" generate_device: "cpu" generate_op: "KExpertsCPU" out_device: "cuda" recursive: False # don't recursively inject submodules of this module - match: name: "^model\\.layers\\..*\\.self_attn$" replace: class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^model$" replace: class: "ktransformers.operators.layer_wise_prefill.KDeepseekV2Model" kwargs: generate_device: "cuda" prefill_device: "cuda" per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill - match: name: "^model.embed_tokens" replace: class: "default" kwargs: generate_device: "cpu" prefill_device: "cpu"