from pydantic import BaseModel,Field from typing import Optional from ktransformers.server.config.config import Config class ConfigArgs(BaseModel): model_name : Optional[str] = Field(..., description="Model name") model_dir: Optional[str] = Field(..., description="Path to model directory") optimize_config_path: Optional[str] = Field('./KTransformers/optimize_config/DeepSeek-V2-Chat.json', description="Path of your optimize config json file") gguf_path: Optional[str] = Field('/models/DeepSeek-Coder-V2-Instruct-GGUF/DeepSeek-Coder-V2-Instruct-Q4_K_M.gguf', description="Path of your gguf file") class Config: protected_namespaces = () paged : bool = Field(True,description='Wether to use paged attention kv cache') # total_context: int = Field(16384, description="Total number of tokens to allocate space for. This is not the max_seq_len supported by the model but the total to distribute dynamically over however many jobs are active at once") total_context: int = Field(2**18, description="Total number of tokens to allocate space for. This is not the max_seq_len supported by the model but the total to distribute dynamically over however many jobs are active at once") max_batch_size: int = Field(20 if paged else 1, description="Max number of batches to run at once, assuming the sequences will fit within total_context") max_chunk_size: int = Field(2048, description="Max chunk size. Determines the size of prefill operations. Can be reduced to reduce pauses whenever a new job is started, but at the expense of overall prompt ingestion speed") max_new_tokens: int = Field(500, description="Max new tokens per completion. For this example applies to all jobs") json_mode: bool = Field(False, description="Use LMFE to constrain the output to JSON format. See schema and details below") healing: bool = Field(False, description="Demonstrate token healing") ban_strings: Optional[list] = Field(None, description="Ban some phrases maybe") gpu_split: Optional[str] = Field(None, description='"auto", or VRAM allocation per GPU in GB') length: Optional[int] = Field(None, description="Maximum sequence length") rope_scale: Optional[float] = Field(None, description="RoPE scaling factor") rope_alpha: Optional[float] = Field(None, description="RoPE alpha value (NTK)") no_flash_attn: bool = Field(False, description="Disable Flash Attention") low_mem: bool = Field( False, description="Enable VRAM optimizations, potentially trading off speed", ) experts_per_token: Optional[int] = Field( None, description="Override MoE model's default number of experts per token", ) load_q4: bool = Field(False, description="Load weights in Q4 mode") fast_safetensors: bool = Field( False, description="Optimized safetensors loading with direct I/O (experimental!)", ) draft_model_dir: Optional[str] = Field(None, description="Path to draft model directory") no_draft_scale: bool = Field( False, description="If draft model has smaller context size than model, don't apply alpha (NTK) scaling to extend it", ) modes: bool = Field(False, description="List available modes and exit.") mode: str = Field( "llama", description="Chat mode. Use llama for Llama 1/2 chat finetunes.", ) username: str = Field("User", description="Username when using raw chat mode") botname: str = Field("Chatbort", description="Bot name when using raw chat mode") system_prompt: Optional[str] = Field(None, description="Use custom system prompt") temperature: float = Field(0.95, description="Sampler temperature, default = 0.95 (1 to disable)") smoothing_factor: float = Field(0.0, description="Smoothing Factor, default = 0.0 (0 to disable)") dynamic_temperature: Optional[str] = Field( None, description="Dynamic temperature min,max,exponent, e.g. -dyntemp 0.2,1.5,1", ) top_k: int = Field(50, description="Sampler top-K, default = 50 (0 to disable)") top_p: float = Field(0.8, description="Sampler top-P, default = 0.8 (0 to disable)") top_a: float = Field(0.0, description="Sampler top-A, default = 0.0 (0 to disable)") skew: float = Field(0.0, description="Skew sampling, default = 0.0 (0 to disable)") typical: float = Field( 0.0, description="Sampler typical threshold, default = 0.0 (0 to disable)", ) repetition_penalty: float = Field( 1.01, description="Sampler repetition penalty, default = 1.01 (1 to disable)", ) frequency_penalty: float = Field( 0.0, description="Sampler frequency penalty, default = 0.0 (0 to disable)", ) presence_penalty: float = Field( 0.0, description="Sampler presence penalty, default = 0.0 (0 to disable)", ) max_response_tokens: int = Field(300, description="Max tokens per response, default = 1000") response_chunk: int = Field(250, description="Space to reserve in context for reply, default = 250") no_code_formatting: bool = Field(False, description="Disable code formatting/syntax highlighting") cache_8bit: bool = Field(False, description="Use 8-bit (FP8) cache") cache_q4: bool = Field(True, description="Use Q4 cache") ngram_decoding: bool = Field(False, description="Use n-gram speculative decoding") print_timings: bool = Field(False, description="Output timings after each prompt") amnesia: bool = Field(False, description="Forget context after every response") # for transformers batch_size :int = Field(1,description="Batch Size") cache_lens:int = Field(4096, description="Cache lens for transformers static cache") device:str = Field('cuda:2',description="device") cfg = Config() default_args = ConfigArgs(model_name=cfg.model_name,model_dir=cfg.model_path)