- match: class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding replace: class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3 kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda" prefill_device: "cuda" generate_op: "KLinearFP8" prefill_op: "KLinearTorch" - match: name: "^model\\.layers\\..*\\.mlp$" class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE replace: class: ktransformers.operators.experts.KDeepseekV3MoEV2 # mlp module with custom forward function kwargs: generate_device: "cuda" prefill_device: "cuda" - match: class: ktransformers.models.modeling_deepseek_v3.MoEGate replace: class: ktransformers.operators.gate.KMoEGate kwargs: generate_device: "cuda:0" prefill_device: "cuda:0" - match: name: "^model\\.layers\\..*\\.mlp\\.experts$" replace: class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism kwargs: prefill_device: "cuda" prefill_op: "KExpertsTorch" generate_device: "cpu" generate_op: "KExpertsCPU" out_device: "cuda" recursive: False # don't recursively inject submodules of this module - match: name: "^model\\.layers\\..*\\.self_attn$" replace: class: ktransformers.operators.balance_serve_attention.flashinfer_attn # optimized MLA implementation kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^model$" replace: class: "ktransformers.operators.models.KDeepseekV2Model" kwargs: per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill - match: name: "^model.embed_tokens" replace: class: "default" kwargs: generate_device: "cpu" prefill_device: "cpu" - match: class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RMSNorm replace: class: ktransformers.operators.layernorm.RMSNorm kwargs: generate_device: "cuda" prefill_device: "cuda" - match: class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MLP replace: class: ktransformers.operators.mlp.kDeepseekV3MLP kwargs: generate_device: "cuda" prefill_device: "cuda" - match: name: "^lm_head$" # regular expression class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda" prefill_device: "cuda" generate_op: "VLinearMarlin" prefill_op: "KLinearTorch"