- match: name: "^model.embed_tokens" replace: class: "default" kwargs: generate_device: "cpu" prefill_device: "cpu" - match: name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\." class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding replace: class: ktransformers.operators.RoPE.YarnRotaryEmbedding kwargs: generate_device: "cuda:0" prefill_device: "cuda:0" - match: name: "^model\\.layers\\.([345][0-9])\\." class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding replace: class: ktransformers.operators.RoPE.YarnRotaryEmbedding kwargs: generate_device: "cuda:1" prefill_device: "cuda:1" - match: name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda:0" prefill_device: "cuda:0" generate_op: "KLinearMarlin" prefill_op: "KLinearTorch" - match: name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression class: torch.nn.Linear # only match modules matching name and class simultaneously replace: class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types kwargs: generate_device: "cuda:1" prefill_device: "cuda:1" generate_op: "KLinearMarlin" prefill_op: "KLinearTorch" - match: name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp$" class: ktransformers.models.modeling_deepseek.DeepseekV2MoE replace: class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function kwargs: generate_device: "cuda:0" prefill_device: "cuda:0" - match: name: "^model\\.layers\\.([345][0-9])\\.mlp$" class: ktransformers.models.modeling_deepseek.DeepseekV2MoE replace: class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function kwargs: generate_device: "cuda:1" prefill_device: "cuda:1" - match: name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$" replace: class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism kwargs: prefill_device: "cuda:0" prefill_op: "KExpertsTorch" generate_device: "cpu" generate_op: "KExpertsCPU" out_device: "cuda:0" recursive: False # don't recursively inject submodules of this module - match: name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$" replace: class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism kwargs: prefill_device: "cuda:1" prefill_op: "KExpertsTorch" generate_device: "cpu" generate_op: "KExpertsCPU" out_device: "cuda:1" recursive: False # don't recursively inject submodules of this module - match: name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$" replace: class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation kwargs: generate_device: "cuda:0" prefill_device: "cuda:0" - match: name: "^model\\.layers\\.([345][0-9])\\.self_attn$" replace: class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation kwargs: generate_device: "cuda:1" prefill_device: "cuda:1" - match: name: "^model$" replace: class: "ktransformers.operators.models.KDeepseekV2Model" kwargs: per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill transfer_map: 30: "cuda:1" - match: name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\." replace: class: "default" kwargs: generate_device: "cuda:0" prefill_device: "cuda:0" - match: name: "^lm_head" class: torch.nn.Linear replace: class: ktransformers.operators.linear.KTransformersLinear kwargs: generate_device: "cuda:1" prefill_device: "cuda:1" generate_op: "KLinearMarlin" prefill_op: "KLinearTorch" - match: name: "(^model\\.layers\\.([345][0-9])\\.)|(model.norm)" replace: class: "default" kwargs: generate_device: "cuda:1" prefill_device: "cuda:1"