Merge remote-tracking branch 'origin/main' into check-para

This commit is contained in:
Alisehen 2025-04-23 02:40:14 +00:00
commit f7d939313b
8 changed files with 219 additions and 145 deletions

View file

@ -14,15 +14,10 @@ from ktransformers.server.backend.base import BackendInterfaceBase
from ktransformers.server.config.config import Config
from ktransformers.server.config.log import logger
from fastapi.responses import JSONResponse
from ktransformers.server.schemas.endpoints.chat import ChatCompletionChunk
from ktransformers.server.schemas.endpoints.chat import ChatCompletionChunk, CompletionUsage
# Define own data structure instead of importing from OpenAI
class CompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: Optional[Dict[str, Any]] = None
completion_tokens_details: Optional[Dict[str, Any]] = None
class Choice(BaseModel):
index: int
@ -267,6 +262,12 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
completion_tokens=raw_usage.decode_count,
total_tokens=raw_usage.prefill_count + raw_usage.decode_count
)
if create.return_speed:
chunk.usage.prefill_time = res.prefill_time
chunk.usage.decode_time = res.decode_time
else:
chunk.usage.__dict__.pop('prefill_time', None)
chunk.usage.__dict__.pop('decode_time', None)
yield chunk
elif isinstance(res, tuple) and len(res) == 2:
token, finish_reason = res
@ -427,8 +428,15 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
usage = CompletionUsage(
prompt_tokens=raw_usage.prefill_count,
completion_tokens=raw_usage.decode_count,
total_tokens=raw_usage.prefill_count + raw_usage.decode_count
total_tokens=raw_usage.prefill_count + raw_usage.decode_count,
)
if create.return_speed:
usage.prefill_time = res.prefill_time
usage.decode_time = res.decode_time
else:
usage.__dict__.pop('prefill_time', None)
usage.__dict__.pop('decode_time', None)
elif isinstance(res, tuple) and len(res) == 2:
token, finish_reason = res
token = re.sub('|'.join(map(re.escape, too_calls_dict.keys())), lambda m: too_calls_dict[m.group(0)], token)

View file

@ -46,6 +46,8 @@ import pickle
import subprocess
import tempfile
import atexit
import signal
ktransformer_rules_dir = (
os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..", "..", "./optimize/optimize_rules/")
@ -55,6 +57,7 @@ default_optimize_rules = {
"Qwen2MoeForCausalLM": ktransformer_rules_dir + "Qwen2-57B-A14B-Instruct-serve.yaml",
}
async def chat_stream(queue: asyncio.Queue, tokenizer: AutoTokenizer):
streamer = TextStreamer(tokenizer)
while True:
@ -293,10 +296,6 @@ class BalanceServeInterface(BackendInterfaceBase):
kvcache_event.wait()
def cleanup():
if sched_process.poll() is None:
sched_process.terminate()
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
pickle.dump(args, temp_file)
temp_file_path = temp_file.name
@ -311,7 +310,27 @@ class BalanceServeInterface(BackendInterfaceBase):
stderr=log
)
print("sched_rpc started with PID:", sched_process.pid)
atexit.register(cleanup)
def signal_handler(signum, frame):
print(f"Received signal {signum}, shutting down...")
cleanup()
os._exit(0)
def cleanup():
print("Cleaning up...")
for p in processes:
if p.is_alive():
print(f"Terminating subprocess {p.pid}")
p.terminate()
p.join()
if sched_process and sched_process.poll() is None:
print(f"Terminating sched_process {sched_process.pid}")
sched_process.terminate()
sched_process.wait()
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
start_event.wait()

View file

@ -2,14 +2,22 @@ from typing import List, Optional, Union, Dict, Any
from typing_extensions import Literal
from enum import Enum
from pydantic import BaseModel, Field
from ktransformers.server.config.config import Config
from ktransformers.server.schemas.base import Object
from openai.types.completion_usage import CompletionUsage
from openai.types.chat.chat_completion_chunk import Choice
from uuid import uuid4
class CompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: Optional[Dict[str, Any]] = None
completion_tokens_details: Optional[Dict[str, Any]] = None
prefill_time: Optional[float] = None
decode_time: Optional[float] = None
class Role(Enum):
system = 'system'
@ -58,16 +66,16 @@ class ChatCompletionCreate(BaseModel):
messages: List[Message]
model: str
stream: bool = False
temperature: Optional[float] = Field(default=0.6)
top_p: Optional[float] = Field(default=1.0)
temperature: Optional[float] = Field(default=Config().temperature)
top_p: Optional[float] = Field(default=Config().top_p)
tools: Optional[List[Tool]] = None
tool_choice: Optional[Union[str, Dict[str, Any]]] = None
stream_options: Optional[Dict[str, Any]] = None
frequency_penalty: float = 0
presence_penalty: float = 0
max_tokens: Optional[int] = Field(default=50)
max_completion_tokens: Optional[int] = Field(default=50)
max_tokens: Optional[int] = Field(default=Config().max_new_tokens)
max_completion_tokens: Optional[int] = Field(default=Config().max_new_tokens)
return_speed: Optional[bool] = Field(default=False)
def get_tokenizer_messages(self):
return [m.to_tokenizer_message() for m in self.messages]

View file

@ -1,17 +1,17 @@
from typing import List, Optional
from enum import Enum
from pydantic import BaseModel, Field
from ktransformers.server.config.config import Config
from ..base import Object
class CompletionCreate(BaseModel):
model: str
prompt: str | List[str]
stream: bool = False
temperature: Optional[float] = Field(default=0.6)
top_p: Optional[float] = Field(default=1)
max_tokens: Optional[int] = Field(default=50)
max_completion_tokens: Optional[int] = Field(default=50)
temperature: Optional[float] = Field(default=Config().temperature)
top_p: Optional[float] = Field(default=Config().top_p)
max_tokens: Optional[int] = Field(default=Config().max_new_tokens)
max_completion_tokens: Optional[int] = Field(default=Config().max_new_tokens)
def get_tokenizer_messages(self):
if isinstance(self.prompt,List):

View file

@ -25,19 +25,10 @@ class DataEvaluator:
"""
# 读取 Parquet 文件
# dataset = load_dataset('parquet', data_files=file_path)
ds = load_dataset(file_path,"all")
df = pd.DataFrame(ds['test'])
# print(ds)
# # ds_1 = ds['train']
# ds_2 = ds['validation']
# ds_3 = ds['test']
# # 将数据集转换为 Pandas DataFrame
# df_test = pd.DataFrame(ds['test'])
# df_val = pd.DataFrame(ds['validation'])
# for _, row in df.iterrows():
# self.data.append(row.to_dict())
# df = pd.read_parquet(file_path)
splits = {'test': 'all/test-00000-of-00001.parquet', 'validation': 'all/validation-00000-of-00001.parquet',
'dev': 'all/dev-00000-of-00001.parquet',
'auxiliary_train': 'all/auxiliary_train-00000-of-00001.parquet'}
df = pd.read_parquet("hf://datasets/cais/mmlu/" + splits["test"])
for _, row in df.iterrows():
self.data.append(row.to_dict())

View file

@ -8,12 +8,57 @@ from datasets import load_dataset
import os
import concurrent.futures
import threading
import re
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
os.environ['https_proxy'] = ''
os.environ['http_proxy'] = ''
hint = 'There is a single choice question. Answer the question by replying A, B, C, D. No other answers are accepted. Just the letter.'
def extract_final_answer(text):
"""
提取模型预测的最终选项 A/B/C/D
支持自然语言多行markdown高亮非末尾结论等格式
"""
text = text.strip()
# 1. 显式语句匹配(优先)
explicit_patterns = [
r'Answer:\s*([A-D])\b',
r'Correct answer:\s*([A-D])\b',
r'The correct answer is\s*\*?\*?\s*([A-D])\b',
r'Answer is\s*([A-D])\b',
r'Therefore,\s*answer is\s*([A-D])\b',
r'Therefore,\s*the answer should be\s*(?:Option\s*)?([A-D])\b',
r'The answer should be\s*(?:Option\s*)?([A-D])\b',
r'Option\s+([A-D])\s+is correct',
]
for pat in explicit_patterns:
match = re.search(pat, text, re.IGNORECASE)
if match:
return match.group(1).upper()
# 2. markdown 强调 **C**, **C. something**
markdown_match = re.findall(r'\*\*\s*([A-D])[\.\s]?', text)
if markdown_match:
return markdown_match[-1].upper()
# 3. 查找单引号中的 'C' 或 "C"
quote_match = re.findall(r"['\"]([A-D])['\"]", text)
if quote_match:
return quote_match[-1].upper()
# 4. 倒数几行是否以 "C." 或 "C" 开头
lines = text.splitlines()
for line in reversed(lines[-5:]):
line = line.strip()
match = re.match(r'^([A-D])([.\s]|$)', line)
if match:
return match.group(1).upper()
# 再不行就返回 None
return None
class DataEvaluator:
def __init__(self):
self.data = []
@ -22,8 +67,10 @@ class DataEvaluator:
"""
从数据文件中加载数据每条记录对应一个实例
"""
ds = load_dataset(file_path, "all")
df = pd.DataFrame(ds['test'])
splits = {'test': 'all/test-00000-of-00001.parquet', 'validation': 'all/validation-00000-of-00001.parquet',
'dev': 'all/dev-00000-of-00001.parquet',
'auxiliary_train': 'all/auxiliary_train-00000-of-00001.parquet'}
df = pd.read_parquet("hf://datasets/cais/mmlu/" + splits["test"])
for _, row in df.iterrows():
self.data.append(row.to_dict())
@ -73,6 +120,7 @@ def generate_text(api_url, question, model_name, stream=False):
def main(concurrent_requests, data_evaluator: DataEvaluator, result_file, log_file, api_url, model_name):
start_total_time = time.time()
total_score = 0
total_exact_score = 0
results = []
file_lock = threading.Lock()
@ -85,6 +133,7 @@ def main(concurrent_requests, data_evaluator: DataEvaluator, result_file, log_fi
def worker(index, data_item):
nonlocal total_score
nonlocal total_exact_score
question = data_evaluator.get_prompt(data_item)
start_time = time.time()
try:
@ -95,13 +144,15 @@ def main(concurrent_requests, data_evaluator: DataEvaluator, result_file, log_fi
answer = chr(data_item['answer'] + 65)
processed_prediction = data_evaluator.post_processing(prediction)
score = data_evaluator.score(processed_prediction, answer)
exact_score = data_evaluator.score(extract_final_answer(prediction), answer)
elapsed_time = time.time() - start_time
result_data = {
"question_id": index,
"answer": answer,
"prediction": processed_prediction,
"real_prediction": prediction,
"full_prediction": prediction,
"score": score,
"exact_score": exact_score,
"time": elapsed_time
}
# 写入结果时加锁保证线程安全
@ -124,6 +175,7 @@ def main(concurrent_requests, data_evaluator: DataEvaluator, result_file, log_fi
if res is not None:
results.append(res)
total_score += res['score']
total_exact_score += res['exact_score']
total_time = time.time() - start_total_time
throughput = len(data_subset) / total_time if total_time > 0 else 0
@ -133,6 +185,8 @@ def main(concurrent_requests, data_evaluator: DataEvaluator, result_file, log_fi
log_f.write(f"Throughput: {throughput:.2f} requests per second\n")
average_score = total_score / len(data_subset) if data_subset else 0
log_f.write(f"Average Score: {average_score}\n")
average_exact_score = total_exact_score / len(data_subset) if data_subset else 0
log_f.write(f"Average Exact Score: {average_exact_score}\n")
log_f.write('-' * 40 + '\n')
print(f"Results saved to {result_file}")

View file

@ -2,23 +2,18 @@ import asyncio
import json
import sys
import aiohttp
import random
import argparse
import yaml
import os
import time
from time import sleep
decodesz = 128
# Server URL (replace with your server URL)
SERVER_URL = "http://localhost:10002/v1/chat/completions"
bf_list = [1]
decodesz_list = [128]
prompt_list = ['Please elaborate on modern world history.', 'Please introduce Harry Potter.', 'I want to learn Python. Please give me some advice.', 'Please tell me a joke ']
async def fetch_event_stream(session, payload, request_id):
prompt_list = [
'Please elaborate on modern world history.',
'Please introduce Harry Potter.',
'I want to learn Python. Please give me some advice.',
'Please tell me a joke '
]
async def fetch_event_stream(session, payload, request_id, stream):
try:
headers = {
'accept': 'application/json',
'Content-Type': 'application/json'
@ -31,104 +26,80 @@ async def fetch_event_stream(session, payload, request_id):
print(f"Request {request_id}: Error, status {response.status}")
return
output_text = "" # 存储当前 response 的所有 token
total_tokens = 0 # 统计总 tokens 数
decode_start_time = None # 记录 decode 阶段开始时间
decode_end_time = None # 记录 decode 结束时间
output_text = ""
async for line in response.content:
try:
decoded_line = line.decode("utf-8").strip()
if stream:
async for line in response.content:
try:
decoded_line = line.decode("utf-8").strip()
if not decoded_line or not decoded_line.startswith("data: "):
continue
# 过滤空行
if not decoded_line or not decoded_line.startswith("data: "):
continue
decoded_line = decoded_line[6:].strip()
if not decoded_line:
continue
decoded_line = decoded_line[6:].strip() # 去掉 `data: `
response_data = json.loads(decoded_line)
choices = response_data.get("choices", [])
if not choices:
continue
# 确保 JSON 数据是合法的
if not decoded_line:
continue
delta = choices[0].get("delta", {})
token = delta.get("content", "")
response_data = json.loads(decoded_line) # 解析 JSON
if token:
output_text += token
sys.stdout.write(token)
sys.stdout.flush()
# 确保 choices 存在
choices = response_data.get("choices", [])
if not choices:
continue
finish_reason = choices[0].get("finish_reason", None)
if finish_reason:
break
delta = choices[0].get("delta", {})
token = delta.get("content", "")
if token:
if decode_start_time is None:
decode_start_time = time.time() # 记录 decode 开始时间
output_text += token # 追加 token
sys.stdout.write(token) # 直接输出 token
sys.stdout.flush() # 立即刷新,确保 token 立刻出现在终端
total_tokens += 1 # 增加 token 计数
decode_end_time = time.time() # 每次收到 token更新 decode 结束时间
# 检查是否完成
finish_reason = choices[0].get("finish_reason", None)
if finish_reason:
# print(f"\nRequest {request_id}: Done")
break # 结束流式处理
except json.JSONDecodeError as e:
print(f"\nRequest {request_id}: JSON Decode Error - {e}")
except IndexError:
print(f"\nRequest {request_id}: List Index Error - choices is empty")
except Exception as e:
print(f"\nRequest {request_id}: Error parsing stream - {e}")
# 计算 decode 速度
if decode_start_time and decode_end_time and total_tokens > 0:
decode_time = decode_end_time - decode_start_time
decode_speed = total_tokens / decode_time if decode_time > 0 else 0
# print(f"Request {request_id}: Decode Speed = {decode_speed:.2f} tokens/s")
except json.JSONDecodeError as e:
print(f"\nRequest {request_id}: JSON Decode Error - {e}")
except IndexError:
print(f"\nRequest {request_id}: List Index Error - choices is empty")
except Exception as e:
print(f"\nRequest {request_id}: Error parsing stream - {e}")
else:
# 非 stream 模式下,一次性接收完整 json
response_data = await response.json()
choices = response_data.get("choices", [])
if choices:
content = choices[0].get("message", {}).get("content", "")
print(f"Request {request_id} Output:\n{content}")
output_text += content
except Exception as e:
print(f"\nRequest {request_id}: Exception - {e}")
async def main(prompt_id):
async def main(prompt_id, model, stream, max_tokens, temperature, top_p):
async with aiohttp.ClientSession() as session:
payload = {
"messages": [
{"role": "system", "content": ""},
{"role": "user", "content": prompt_list[prompt_id]}
],
"model": "DeepSeek-V3",
"stream": True,
"max_completion_tokens": 2,
# "temperature": 0.3,
# "top_p": 1.0,
# "max_tokens" : 20,
"model": model,
"stream": stream,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p
}
tasks = [fetch_event_stream(session, payload, prompt_id)]
await asyncio.gather(*tasks)
payload["temperature"] = 0.3
tasks = [fetch_event_stream(session, payload, prompt_id)]
await asyncio.gather(*tasks)
payload["top_p"] = 1
tasks = [fetch_event_stream(session, payload, prompt_id)]
await asyncio.gather(*tasks)
payload["max_tokens"] = 200
tasks = [fetch_event_stream(session, payload, prompt_id)]
await asyncio.gather(*tasks)
payload["stream"] = False
tasks = [fetch_event_stream(session, payload, prompt_id)]
tasks = [fetch_event_stream(session, payload, prompt_id, stream)]
await asyncio.gather(*tasks)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Event Stream Request Tester")
parser.add_argument("--question_id", type=int, default=0, required=False)
parser.add_argument("--question_id", type=int, default=0)
parser.add_argument("--model", type=str, required=True)
parser.add_argument("--stream", type=bool, default=True)
parser.add_argument("--max_tokens", type=int, default=500)
parser.add_argument("--temperature", type=float, default=0.8)
parser.add_argument("--top_p", type=float, default=1)
parser.add_argument("--api_url", type=str, default="http://localhost:10006/v1/chat/completions", help="API URL")
args = parser.parse_args()
output_file = "ktransformer_test_results.txt"
asyncio.run(main(args.question_id))
SERVER_URL = args.api_url
asyncio.run(main(args.question_id, args.model, args.stream, args.max_tokens, args.temperature, args.top_p))

View file

@ -12,6 +12,8 @@ from time import sleep
decodesz = 128
# Server URL (replace with your server URL)
decodesz_list = [128]
prefill_speeds = []
decode_speeds = []
ktansformer_prompt1024="""Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly normal, thank you very much.
They were the last people you'd expect to be involved in anything strange or mysterious, because they just didn't hold with such nonsense.Mr. Dursley was the director of a firm called Grunnings, which made drills.
He was a big, beefy man with hardly any neck, although he did have a very large mustache. Mrs.
@ -43,17 +45,19 @@ They were whispering excitedly together. Mr. Dursley was enraged to see that a c
The nerve of him! But then it struck Mr. Dursley that this was probably some silly stunt these people were obviously collecting for something yes, that would be it.
The traffic moved on and a few minutes later, Mr. Dursley arrived in the Grunnings parking lot, his mind back on drills.
Mr. Dursley always sat with his back to the window in his office on the ninth floor."""
async def fetch_event_stream(session, request_id, prompt):
async def fetch_event_stream(session, request_id, prompt, max_tokens, model):
try:
payload = {
"messages": [
{"role": "system", "content": ""},
{"role": "user", "content": prompt}
],
"model": "DeepSeek-V3",
"model": model,
"temperature": 0.3,
"top_p": 1.0,
"stream": True
"stream": True,
"return_speed": True,
"max_tokens": max_tokens,
}
headers = {
@ -70,6 +74,7 @@ async def fetch_event_stream(session, request_id, prompt):
total_tokens = 0
decode_start_time = None
decode_end_time = None
usage_info = None
async for line in response.content:
try:
@ -82,6 +87,10 @@ async def fetch_event_stream(session, request_id, prompt):
continue
response_data = json.loads(decoded_line)
if "usage" in response_data:
usage_info = response_data["usage"]
choices = response_data.get("choices", [])
if not choices:
continue
@ -107,34 +116,48 @@ async def fetch_event_stream(session, request_id, prompt):
except Exception as e:
print(f"[Request {request_id}] Stream Error: {e}")
if buffer.strip():
print(f"[Request {request_id}] {buffer.strip()}")
if decode_start_time and decode_end_time and total_tokens > 0:
decode_time = decode_end_time - decode_start_time
decode_speed = total_tokens / decode_time if decode_time > 0 else 0
print(f"[Request {request_id}] Speed: {decode_speed:.2f} tokens/s")
if usage_info:
if "prefill_time" in usage_info:
# print(f"[Request {request_id}] Usage:")
# for key, value in usage_info.items():
# print(f" {key}: {value}")
prefill_speed = usage_info["prompt_tokens"] / usage_info["prefill_time"]
decode_speed = usage_info["completion_tokens"] / usage_info["decode_time"]
prefill_speeds.append(prefill_speed)
decode_speeds.append(decode_speed)
print(f'[Request {request_id}] prefill speed: {prefill_speed}')
print(f'[Request {request_id}] decode speed: {decode_speed}')
except Exception as e:
print(f"[Request {request_id}] Exception: {e}")
async def main(concurrent_requests , prompt ):
async def main(concurrent_requests , prompt, max_tokens, model):
async with aiohttp.ClientSession() as session:
tasks = [fetch_event_stream(session, i , prompt) for i in range(concurrent_requests)]
tasks = [fetch_event_stream(session, i , prompt, max_tokens, model) for i in range(concurrent_requests)]
await asyncio.gather(*tasks)
if len(prefill_speeds) != 0:
import numpy as np
print(f"concurrency: {len(prefill_speeds)}")
print(f"total prefill speed: {np.sum(prefill_speeds)}\n total decode speed: {np.sum(decode_speeds)}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Event Stream Request Tester")
parser.add_argument("--concurrent", type=int, default=1, help="Number of concurrent requests")
parser.add_argument("--model", type=str, default="DeepSeek-V3", help="Model name", required=True)
parser.add_argument("--prompt_lens", type=int, default=1024, help="prefill prompt lens, 1024 or 2048")
parser.add_argument("--api_url", type=str, default="http://localhost:10002/v1/chat/completions", help="API URL")
parser.add_argument("--max_tokens", type=int, default=50, help="max decode tokens")
args = parser.parse_args()
SERVER_URL = args.api_url
max_tokens = args.max_tokens
model = args.model
if args.prompt_lens == 1024:
prompt = ktansformer_prompt1024
elif args.prompt_lens == 2048:
prompt = ktansformer_prompt1024 * 2
asyncio.run(main(args.concurrent, prompt))
asyncio.run(main(args.concurrent, prompt, max_tokens, model))