Merge pull request #62 from Azure-Tang/main

[Fix] Fix problem that ktransformers cannot offload whole layer in cpu
This commit is contained in:
UnicornChan 2024-08-29 23:40:21 +08:00 committed by GitHub
commit f536a7085f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 48 additions and 45 deletions

View file

@ -25,7 +25,7 @@ rm -rf /var/lib/apt/lists/* &&
cd ktransformers &&
git submodule init &&
git submodule update &&
pip install ninja pyproject numpy &&
pip install ninja pyproject numpy cpufeature &&
pip install flash-attn &&
CPU_INSTRUCT=NATIVE KTRANSFORMERS_FORCE_BUILD=TRUE TORCH_CUDA_ARCH_LIST="8.0;8.6;8.7;8.9" pip install . --no-build-isolation --verbose &&
pip cache purge

View file

@ -5,7 +5,7 @@ Description :
Author : kkk1nak0
Date : 2024-08-15 07:34:46
Version : 1.0.0
LastEditors : chenxl
LastEditTime : 2024-08-28 15:19:03
LastEditors : Azure-Tang
LastEditTime : 2024-08-29 22:35:51
'''
__version__ = "0.1.3"
__version__ = "0.1.4"

View file

@ -67,6 +67,7 @@ def local_chat(
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if mode == 'long_context':
assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode"
torch.set_default_dtype(torch.float16)
else:
torch.set_default_dtype(config.torch_dtype)
@ -143,8 +144,9 @@ def local_chat(
input_tensor = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
if mode == 'long_context':
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
torch.set_default_dtype(
torch.bfloat16
) # TODO: Remove this, replace dtype using config

View file

@ -6,7 +6,7 @@ Author : Azure-Tang, Boxin Zhang, chenht2022
Date : 2024-07-25 11:25:24
Version : 0.1.0
LastEditors : Azure
LastEditTime : 2024-08-27 03:50:23
LastEditTime : 2024-08-29 09:41:10
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -202,7 +202,7 @@ class KExpertsCPU(KExpertsBase):
def forward(self, input_tensor, expert_ids, weights):
# generate, capture and run cuda graph
# print(expert_ids)
if input_tensor.size(0)==1:
if input_tensor.size(0)==1 and torch.cuda.is_current_stream_capturing():
# TODO: this branch is unreachable, but the shape of input_tensor([1,hidden_size]) and input_tensor_cpu([hidden_size]) is not compatible
#print("capturing experts")
KExpertsCPU.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
@ -636,7 +636,7 @@ class KDeepseekV2MoE(BaseInjectedModule, DeepseekV2MoE):
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode"):
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode") and torch.cuda.is_current_stream_capturing():
self.experts.generate_experts.submit_for_one_decode(hidden_states[0], topk_idx[0], topk_weight[0])
if self.config.n_shared_experts is not None:
y_ = self.shared_experts(identity).squeeze(0)

View file

@ -6,7 +6,7 @@ Author : Azure-Tang, Boxin Zhang
Date : 2024-07-25 11:25:24
Version : 0.1.0
LastEditors : Azure
LastEditTime : 2024-08-14 14:57:04
LastEditTime : 2024-08-29 09:11:16
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -277,7 +277,7 @@ class KLinearCPUInfer(KLinearBase):
def forward(self, x: torch.Tensor) -> torch.Tensor:
origin_shape = x.shape # [batch_size, q_len, hidden_size]
if origin_shape[1] == 1:
if origin_shape[1] == 1 and torch.cuda.is_current_stream_capturing():
out_device = x.device
self.input_tensor_cpu.copy_(x, non_blocking=True)
qlen = origin_shape[1]

View file

@ -670,11 +670,12 @@ class KDeepseekV2Model(BaseInjectedModule):
if self.transfer_map is not None and i in self.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.transfer_map[i]
if cur_device not in self.stream_device_map:
if cur_device not in self.stream_device_map and cur_device.lower() != "cpu":
self.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.stream_device_map[cur_device])
if cur_device.lower() != "cpu":
torch.cuda.set_device(cur_device)
self.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.stream_device_map[cur_device])
hidden_states = hidden_states.to(
self.transfer_map[i], non_blocking=True
)

View file

@ -7,7 +7,7 @@
prefill_device: "cpu"
- match:
name: "^model\\.layers\\.([0-9])\\."
name: "^model\\.layers\\.([0-9]|[1][0-4])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
@ -15,7 +15,7 @@
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([1][0-9])\\."
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
@ -23,7 +23,7 @@
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.([2][0-9])\\."
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
@ -31,7 +31,7 @@
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "^model\\.layers\\.([345][0-9])\\."
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
@ -40,7 +40,7 @@
prefill_device: "cuda:3"
- match:
name: "^model\\.layers\\.([0-9])\\.(?!self_attn).*$" # regular expression
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
@ -50,7 +50,7 @@
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([1][0-9])\\.(?!self_attn).*$" # regular expression
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
@ -60,7 +60,7 @@
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([2][0-9])\\.(?!self_attn).*$" # regular expression
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
@ -70,7 +70,7 @@
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
@ -81,7 +81,7 @@
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([0-9])\\.mlp$"
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
@ -89,7 +89,7 @@
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([1][0-9])\\.mlp$"
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
@ -97,7 +97,7 @@
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.([2][0-9])\\.mlp$"
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
@ -105,7 +105,7 @@
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "^model\\.layers\\.([345][0-9])\\.mlp$"
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
@ -114,7 +114,7 @@
prefill_device: "cuda:3"
- match:
name: "^model\\.layers\\.([0-9])\\.mlp\\.experts$"
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
@ -125,7 +125,7 @@
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([1][0-9])\\.mlp\\.experts$"
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
@ -136,7 +136,7 @@
out_device: "cuda:1"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([2][0-9])\\.mlp\\.experts$"
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
@ -147,7 +147,7 @@
out_device: "cuda:2"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$"
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
@ -159,28 +159,28 @@
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([0-9])\\.self_attn$"
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([1][0-9])\\.self_attn$"
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.([2][0-9])\\.self_attn$"
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "^model\\.layers\\.([345][0-9])\\.self_attn$"
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
@ -194,33 +194,33 @@
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
10: "cuda:1"
20: "cuda:2"
30: "cuda:3"
15: "cuda:1"
30: "cuda:2"
45: "cuda:3"
- match:
name: "^model\\.layers\\.([0-9])\\."
name: "^model\\.layers\\.([0-9]|[1][0-4])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "(^model\\.layers\\.([1][0-9])\\.)"
name: "(^model\\.layers\\.([2][0-9]|[1][5-9])\\.)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "(^model\\.layers\\.([2][0-9])\\.)"
name: "(^model\\.layers\\.([3][0-9]|[4][0-4])\\.)"
replace:
class: "default"
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "(^model\\.layers\\.([345][0-9])\\.)|(^model.norm)|(^lm_head)"
name: "(^model\\.layers\\.([5][0-9]|[4][5-9])\\.)|(^model.norm)|(^lm_head)"
replace:
class: "default"
kwargs:

View file

@ -24,7 +24,7 @@
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn).*$" # regular expression
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
@ -35,7 +35,7 @@
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types