mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 12:40:02 +00:00
Merge pull request #62 from Azure-Tang/main
[Fix] Fix problem that ktransformers cannot offload whole layer in cpu
This commit is contained in:
commit
f536a7085f
8 changed files with 48 additions and 45 deletions
|
@ -25,7 +25,7 @@ rm -rf /var/lib/apt/lists/* &&
|
|||
cd ktransformers &&
|
||||
git submodule init &&
|
||||
git submodule update &&
|
||||
pip install ninja pyproject numpy &&
|
||||
pip install ninja pyproject numpy cpufeature &&
|
||||
pip install flash-attn &&
|
||||
CPU_INSTRUCT=NATIVE KTRANSFORMERS_FORCE_BUILD=TRUE TORCH_CUDA_ARCH_LIST="8.0;8.6;8.7;8.9" pip install . --no-build-isolation --verbose &&
|
||||
pip cache purge
|
||||
|
|
|
@ -5,7 +5,7 @@ Description :
|
|||
Author : kkk1nak0
|
||||
Date : 2024-08-15 07:34:46
|
||||
Version : 1.0.0
|
||||
LastEditors : chenxl
|
||||
LastEditTime : 2024-08-28 15:19:03
|
||||
LastEditors : Azure-Tang
|
||||
LastEditTime : 2024-08-29 22:35:51
|
||||
'''
|
||||
__version__ = "0.1.3"
|
||||
__version__ = "0.1.4"
|
|
@ -67,6 +67,7 @@ def local_chat(
|
|||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
if mode == 'long_context':
|
||||
assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode"
|
||||
torch.set_default_dtype(torch.float16)
|
||||
else:
|
||||
torch.set_default_dtype(config.torch_dtype)
|
||||
|
@ -143,8 +144,9 @@ def local_chat(
|
|||
input_tensor = tokenizer.apply_chat_template(
|
||||
messages, add_generation_prompt=True, return_tensors="pt"
|
||||
)
|
||||
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
|
||||
"please change max_seq_len in ~/.ktransformers/config.yaml"
|
||||
if mode == 'long_context':
|
||||
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
|
||||
"please change max_seq_len in ~/.ktransformers/config.yaml"
|
||||
torch.set_default_dtype(
|
||||
torch.bfloat16
|
||||
) # TODO: Remove this, replace dtype using config
|
||||
|
|
|
@ -6,7 +6,7 @@ Author : Azure-Tang, Boxin Zhang, chenht2022
|
|||
Date : 2024-07-25 11:25:24
|
||||
Version : 0.1.0
|
||||
LastEditors : Azure
|
||||
LastEditTime : 2024-08-27 03:50:23
|
||||
LastEditTime : 2024-08-29 09:41:10
|
||||
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
||||
'''
|
||||
|
||||
|
@ -202,7 +202,7 @@ class KExpertsCPU(KExpertsBase):
|
|||
def forward(self, input_tensor, expert_ids, weights):
|
||||
# generate, capture and run cuda graph
|
||||
# print(expert_ids)
|
||||
if input_tensor.size(0)==1:
|
||||
if input_tensor.size(0)==1 and torch.cuda.is_current_stream_capturing():
|
||||
# TODO: this branch is unreachable, but the shape of input_tensor([1,hidden_size]) and input_tensor_cpu([hidden_size]) is not compatible
|
||||
#print("capturing experts")
|
||||
KExpertsCPU.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
|
||||
|
@ -636,7 +636,7 @@ class KDeepseekV2MoE(BaseInjectedModule, DeepseekV2MoE):
|
|||
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
||||
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
||||
|
||||
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode"):
|
||||
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode") and torch.cuda.is_current_stream_capturing():
|
||||
self.experts.generate_experts.submit_for_one_decode(hidden_states[0], topk_idx[0], topk_weight[0])
|
||||
if self.config.n_shared_experts is not None:
|
||||
y_ = self.shared_experts(identity).squeeze(0)
|
||||
|
|
|
@ -6,7 +6,7 @@ Author : Azure-Tang, Boxin Zhang
|
|||
Date : 2024-07-25 11:25:24
|
||||
Version : 0.1.0
|
||||
LastEditors : Azure
|
||||
LastEditTime : 2024-08-14 14:57:04
|
||||
LastEditTime : 2024-08-29 09:11:16
|
||||
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
||||
'''
|
||||
|
||||
|
@ -277,7 +277,7 @@ class KLinearCPUInfer(KLinearBase):
|
|||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
origin_shape = x.shape # [batch_size, q_len, hidden_size]
|
||||
if origin_shape[1] == 1:
|
||||
if origin_shape[1] == 1 and torch.cuda.is_current_stream_capturing():
|
||||
out_device = x.device
|
||||
self.input_tensor_cpu.copy_(x, non_blocking=True)
|
||||
qlen = origin_shape[1]
|
||||
|
|
|
@ -670,11 +670,12 @@ class KDeepseekV2Model(BaseInjectedModule):
|
|||
if self.transfer_map is not None and i in self.transfer_map:
|
||||
prev_stream = torch.cuda.current_stream()
|
||||
cur_device = self.transfer_map[i]
|
||||
if cur_device not in self.stream_device_map:
|
||||
if cur_device not in self.stream_device_map and cur_device.lower() != "cpu":
|
||||
self.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
|
||||
torch.cuda.set_device(cur_device)
|
||||
self.stream_device_map[cur_device].wait_stream(prev_stream)
|
||||
torch.cuda.set_stream(self.stream_device_map[cur_device])
|
||||
if cur_device.lower() != "cpu":
|
||||
torch.cuda.set_device(cur_device)
|
||||
self.stream_device_map[cur_device].wait_stream(prev_stream)
|
||||
torch.cuda.set_stream(self.stream_device_map[cur_device])
|
||||
hidden_states = hidden_states.to(
|
||||
self.transfer_map[i], non_blocking=True
|
||||
)
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
prefill_device: "cpu"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\."
|
||||
name: "^model\\.layers\\.([0-9]|[1][0-4])\\."
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
|
@ -15,7 +15,7 @@
|
|||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\."
|
||||
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
|
@ -23,7 +23,7 @@
|
|||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\."
|
||||
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\."
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
|
@ -31,7 +31,7 @@
|
|||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\."
|
||||
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||
|
@ -40,7 +40,7 @@
|
|||
prefill_device: "cuda:3"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\.(?!self_attn).*$" # regular expression
|
||||
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
|
@ -50,7 +50,7 @@
|
|||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
|
@ -60,7 +60,7 @@
|
|||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
|
@ -70,7 +70,7 @@
|
|||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
|
@ -81,7 +81,7 @@
|
|||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\.mlp$"
|
||||
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
|
@ -89,7 +89,7 @@
|
|||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\.mlp$"
|
||||
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
|
@ -97,7 +97,7 @@
|
|||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\.mlp$"
|
||||
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
|
@ -105,7 +105,7 @@
|
|||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.mlp$"
|
||||
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
|
@ -114,7 +114,7 @@
|
|||
prefill_device: "cuda:3"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\.mlp\\.experts$"
|
||||
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
|
@ -125,7 +125,7 @@
|
|||
out_device: "cuda:0"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\.mlp\\.experts$"
|
||||
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
|
@ -136,7 +136,7 @@
|
|||
out_device: "cuda:1"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\.mlp\\.experts$"
|
||||
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
|
@ -147,7 +147,7 @@
|
|||
out_device: "cuda:2"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$"
|
||||
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
|
@ -159,28 +159,28 @@
|
|||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\.self_attn$"
|
||||
name: "^model\\.layers\\.([0-9]|[1][0-4])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\.self_attn$"
|
||||
name: "^model\\.layers\\.([2][0-9]|[1][5-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\.self_attn$"
|
||||
name: "^model\\.layers\\.([3][0-9]|[4][0-4])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.self_attn$"
|
||||
name: "^model\\.layers\\.([5][0-9]|[4][5-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
|
@ -194,33 +194,33 @@
|
|||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
transfer_map:
|
||||
10: "cuda:1"
|
||||
20: "cuda:2"
|
||||
30: "cuda:3"
|
||||
15: "cuda:1"
|
||||
30: "cuda:2"
|
||||
45: "cuda:3"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\."
|
||||
name: "^model\\.layers\\.([0-9]|[1][0-4])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "(^model\\.layers\\.([1][0-9])\\.)"
|
||||
name: "(^model\\.layers\\.([2][0-9]|[1][5-9])\\.)"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "(^model\\.layers\\.([2][0-9])\\.)"
|
||||
name: "(^model\\.layers\\.([3][0-9]|[4][0-4])\\.)"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
- match:
|
||||
name: "(^model\\.layers\\.([345][0-9])\\.)|(^model.norm)|(^lm_head)"
|
||||
name: "(^model\\.layers\\.([5][0-9]|[4][5-9])\\.)|(^model.norm)|(^lm_head)"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
prefill_device: "cuda:1"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
|
@ -35,7 +35,7 @@
|
|||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
|
|
Loading…
Add table
Reference in a new issue