Update readme; Format code; Add example yaml.

This commit is contained in:
Azure-Tang 2025-03-14 06:26:05 -04:00
parent c38e77de6b
commit e5b001d76f
8 changed files with 182 additions and 30 deletions

View file

@ -23,6 +23,7 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
<h2 id="Updates">🔥 Updates</h2>
* **Mar 15, 2025**: Support ROCm on AMD GPU ([Tutorial](./doc/en/ROCm.md)).
* **Mar 5, 2025**: Support unsloth 1.58/2.51 bits weights and [IQ1_S/FP8 hybrid](./doc/en/fp8_kernel.md) weights. Support 139K [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context) for DeepSeek-V3 and R1 in 24GB VRAM.
* **Feb 25, 2025**: Support [FP8 GPU kernel](./doc/en/fp8_kernel.md) for DeepSeek-V3 and R1; [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context).
* **Feb 15, 2025**: Longer Context (from 4K to 8K for 24GB VRAM) & Slightly Faster Speed +15%, up to 16 Tokens/s), update [docs](./doc/en/DeepseekR1_V3_tutorial.md) and [online books](https://kvcache-ai.github.io/ktransformers/).

View file

@ -22,6 +22,7 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
<h2 id="Updates">🔥 Updates</h2>
* **Mar 15, 2025**: Support ROCm on AMD GPU ([Tutorial](./doc/en/ROCm.md)).
* **Mar 5, 2025**: Support unsloth 1.58/2.51 bits weights and [IQ1_S/FP8 hybrid](./doc/en/fp8_kernel.md) weights. Support 139K [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context) for DeepSeek-V3 and R1 in 24GB VRAM.
* **Feb 25, 2025**: Support [FP8 GPU kernel](./doc/en/fp8_kernel.md) for DeepSeek-V3 and R1; [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context).
* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./en/DeepseekR1_V3_tutorial.md).

View file

@ -10,6 +10,7 @@
- [Injection Tutorial](en/injection_tutorial.md)
- [Multi-GPU Tutorial](en/multi-gpu-tutorial.md)
- [Use FP8 GPU Kernel](en/fp8_kernel.md)
- [Use AMD GPU](en/ROCm.md)
# Server
- [Server](en/api/server/server.md)
- [Website](en/api/server/website.md)

96
doc/en/ROCm.md Normal file
View file

@ -0,0 +1,96 @@
# ROCm Support for ktransformers (Beta)
## Introduction
### Overview
In our effort to expand GPU architecture support beyond NVIDIA, we are excited to introduce **AMD GPU support through ROCm** in ktransformers (Beta release). This implementation has been tested and developed using EPYC 9274F processors and AMD Radeon 7900xtx GPUs.
## Installation Guide
### 1. Install ROCm Driver
Begin by installing the ROCm drivers for your AMD GPU:
- [Official ROCm Installation Guide for Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/native_linux/install-radeon.html)
### 2. Set Up Conda Environment
We recommend using Miniconda3/Anaconda3 for environment management:
```bash
# Download Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# Create environment
conda create --name ktransformers python=3.11
conda activate ktransformers
# Install required libraries
conda install -c conda-forge libstdcxx-ng
# Verify GLIBCXX version (should include 3.4.32)
strings ~/anaconda3/envs/ktransformers/lib/libstdc++.so.6 | grep GLIBCXX
```
> **Note:** Adjust the Anaconda path if your installation directory differs from `~/anaconda3`
### 3. Install PyTorch for ROCm
Install PyTorch with ROCm 6.2.4 support:
```bash
pip3 install torch torchvision torchaudio \
--index-url https://download.pytorch.org/whl/rocm6.2.4
pip3 install packaging ninja cpufeature numpy
```
> **Tip:** For other ROCm versions, visit [PyTorch Previous Versions](https://pytorch.org/get-started/previous-versions/)
### 4. Build ktransformers
```bash
# Clone repository
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
git submodule update --init
# Optional: Compile web interface
# See: api/server/website.md
# Install dependencies
bash install.sh
```
## Running DeepSeek-R1 Models
### Configuration for 24GB VRAM GPUs
Use our optimized configuration for constrained VRAM:
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path ktransformers/optimize/optimize_rules/rocm/DeepSeek-V3-Chat.yaml \
--cpu_infer <cpu_cores + 1>
```
> **Beta Note:** Current Q8 linear implementation (Marlin alternative) shows suboptimal performance. Expect optimizations in future releases.
### Configuration for 40GB+ VRAM GPUs
For better performance on high-VRAM GPUs:
1. Modify `DeepSeek-V3-Chat.yaml`:
```yaml
# Replace all instances of:
KLinearMarlin → KLinearTorch
```
2. Execute with:
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path <modified_yaml_path> \
--cpu_infer <cpu_cores + 1>
```
> **Tip:** If you got 2 * 24GB AMD GPUS, you may also do the same modify and run `ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat-multi-gpu.yaml` instead.
## Known Limitations
- Marlin operations not supported on ROCm platform
- Current Q8 linear implementation shows reduced performance (Beta limitation)

View file

@ -187,8 +187,6 @@ class KLinearQ8(KLinearBase):
config: PretrainedConfig,
orig_module: nn.Module = None,
device: str = "cuda",
group_size: int = 128, # 增大分组大小,减少量化噪声
percentile: float = 99.99, # 新增:对异常值进行截断的百分位数
**kwargs,
):
super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
@ -199,8 +197,6 @@ class KLinearQ8(KLinearBase):
self.weight_zero_point = None
self.bias = None
self.loaded = False
self.group_size = group_size
self.percentile = percentile
def forward(self, x: torch.Tensor) -> torch.Tensor:
orig_dtype = x.dtype
@ -246,16 +242,9 @@ class KLinearQ8(KLinearBase):
# For Q4, ensure the values stay within 4-bit range
if bits == 4:
q_matrix = torch.clamp(q_matrix, -7, 7)
# Get matrix shape
rows, cols = q_matrix.shape
# Convert to float32
dequant_matrix = q_matrix.to(torch.float32)
# Create broadcasted scales: reshape scales to [1, cols] for broadcasting
scales_broadcast = scales.view(1, cols)
# Apply dequantization to all columns at once using matrix multiplication
dequant_matrix = dequant_matrix * scales_broadcast
@ -285,21 +274,14 @@ class KLinearQ8(KLinearBase):
# Determine quantization parameters based on bits
if bits == 8:
# Q8: range is -127 to 127
max_int = 127
qtype = torch.int8
elif bits == 4:
# Q4: range is -7 to 7 (using 4-bit signed integers)
max_int = 7
qtype = torch.int8 # We'll still use int8 storage but limit to 4-bit range
qtype = torch.int8 # We'll still use int8 storage but limit to 4-bit range, wait for native support
else:
raise ValueError("Quantization bits must be either 8 or 4")
# Initialize results and scale factors
q_matrix = torch.zeros_like(matrix, dtype=qtype)
scales = torch.zeros(cols, dtype=torch.float32, device=matrix.device)
# Initialize scale factors
scales = torch.zeros(cols, dtype=torch.float32, device=matrix.device)
# Calculate max absolute value for each column
@ -370,13 +352,8 @@ class KLinearQ8(KLinearBase):
class KLinearFP8(KLinearBase):
# this kernel requires special handling for weight
# Please load the weight file downloaded from KVCache.AI
marlin_q_w: torch.Tensor
marlin_s: torch.Tensor
g_idx: torch.Tensor
sort_indices: torch.Tensor
has_bias: bool
weight: torch.Tensor
scale_w: torch.Tensor
bias: torch.Tensor
def __init__(
self,

View file

@ -13,7 +13,7 @@
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearQ8"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
@ -24,7 +24,7 @@
kwargs:
generate_device: "cpu"
prefill_device: "cuda"
generate_op: "KLinearTorch"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:

View file

@ -14,7 +14,7 @@
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearQ8"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
@ -23,9 +23,9 @@
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cpu"
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearCPUInfer"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"

View file

@ -0,0 +1,76 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearCPUInfer"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cpu"
prefill_device: "cuda"
generate_op: "KLinearQ8"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"