Merge branch 'kvcache-ai:main' into main

This commit is contained in:
Yuhao Tsui 2025-03-10 09:10:28 +08:00 committed by GitHub
commit e5694f91c0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 356 additions and 163 deletions

View file

@ -13,6 +13,8 @@ from ktransformers.server.utils.create_interface import get_interface
from ktransformers.server.schemas.assistants.streaming import check_link_response
from ktransformers.server.backend.base import BackendInterfaceBase
from ktransformers.server.schemas.endpoints.chat import RawUsage
router = APIRouter(prefix='/api')
# https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion
@ -61,14 +63,18 @@ async def generate(request: Request, input: OllamaGenerateCompletionRequest):
if input.stream:
async def inner():
async for token in interface.inference(input.prompt, id):
d = OllamaGenerationStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
response=token,
done=False
)
yield d.model_dump_json() + '\n'
async for res in interface.inference(input.prompt, id):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
d = OllamaGenerationStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
response=token,
done=False
)
yield d.model_dump_json() + '\n'
d = OllamaGenerationStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
@ -142,14 +148,18 @@ async def chat(request: Request, input: OllamaChatCompletionRequest):
eval_count = 0 # 统计生成的 token 数量
tokens = []
async for token in interface.inference(prompt, id):
d = OllamaChatCompletionStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
message={"role": "assistant", "content": token},
done=False
)
yield d.model_dump_json() + '\n'
async for res in interface.inference(prompt, id):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
d = OllamaChatCompletionStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
message={"role": "assistant", "content": token},
done=False
)
yield d.model_dump_json() + '\n'
# 计算性能数据
end_time = time()
total_duration = int((end_time - start_time) * 1_000_000_000) # 转换为纳秒