Merge branch 'kvcache-ai:main' into main

This commit is contained in:
Yuhao Tsui 2025-03-10 09:10:28 +08:00 committed by GitHub
commit e5694f91c0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 356 additions and 163 deletions

View file

@ -13,6 +13,8 @@ from ktransformers.server.utils.create_interface import get_interface
from ktransformers.server.schemas.assistants.streaming import check_link_response
from ktransformers.server.backend.base import BackendInterfaceBase
from ktransformers.server.schemas.endpoints.chat import RawUsage
router = APIRouter(prefix='/api')
# https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-completion
@ -61,14 +63,18 @@ async def generate(request: Request, input: OllamaGenerateCompletionRequest):
if input.stream:
async def inner():
async for token in interface.inference(input.prompt, id):
d = OllamaGenerationStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
response=token,
done=False
)
yield d.model_dump_json() + '\n'
async for res in interface.inference(input.prompt, id):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
d = OllamaGenerationStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
response=token,
done=False
)
yield d.model_dump_json() + '\n'
d = OllamaGenerationStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
@ -142,14 +148,18 @@ async def chat(request: Request, input: OllamaChatCompletionRequest):
eval_count = 0 # 统计生成的 token 数量
tokens = []
async for token in interface.inference(prompt, id):
d = OllamaChatCompletionStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
message={"role": "assistant", "content": token},
done=False
)
yield d.model_dump_json() + '\n'
async for res in interface.inference(prompt, id):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
d = OllamaChatCompletionStreamResponse(
model=config.model_name,
created_at=str(datetime.now()),
message={"role": "assistant", "content": token},
done=False
)
yield d.model_dump_json() + '\n'
# 计算性能数据
end_time = time()
total_duration = int((end_time - start_time) * 1_000_000_000) # 转换为纳秒

View file

@ -5,10 +5,16 @@ from fastapi import APIRouter
from fastapi.requests import Request
from ktransformers.server.utils.create_interface import get_interface
from ktransformers.server.schemas.assistants.streaming import chat_stream_response
from ktransformers.server.schemas.endpoints.chat import ChatCompletionCreate,ChatCompletionChunk,ChatCompletionObject, Usage
from ktransformers.server.schemas.endpoints.chat import ChatCompletionCreate
from ktransformers.server.schemas.endpoints.chat import RawUsage
from ktransformers.server.backend.base import BackendInterfaceBase
from ktransformers.server.config.config import Config
from ktransformers.server.schemas.endpoints.chat import ChatCompletionChunk
from openai.types.chat import ChatCompletion
from openai.types.completion_usage import CompletionUsage
router = APIRouter()
@router.get('/models', tags=['openai'])
@ -29,15 +35,76 @@ async def chat_completion(request:Request,create:ChatCompletionCreate):
assert request.headers.get('Authorization', '').split()[-1] == Config().api_key
if create.stream:
from openai.types.chat.chat_completion_chunk import Choice, ChoiceDelta
async def inner():
chunk = ChatCompletionChunk(id=id,object='chat.completion.chunk',created=int(time()))
async for token in interface.inference(input_message,id,create.temperature,create.top_p):
chunk.set_token(token)
yield chunk
return chat_stream_response(request,inner())
chunk = ChatCompletionChunk(
id = id,
choices = [],
object = 'chat.completion.chunk',
created = int(time()),
model = Config().model_name,
)
async for res in interface.inference(input_message,id, create.temperature, create.top_p):
if isinstance(res, RawUsage):
# at the end of inference, interface.inference() will return the usage of inference
raw_usage = res
chunk.choices = []
chunk.usage = CompletionUsage(
prompt_tokens = raw_usage.prefill_count,
completion_tokens = raw_usage.decode_count,
total_tokens = raw_usage.prefill_count + raw_usage.decode_count
)
yield chunk
else:
token, finish_reason = res
choice = Choice(
index = 0,
delta = ChoiceDelta(content=token, role=None, tool_calls=None),
finish_reason = finish_reason,
logprobs = None,
)
chunk.choices = [choice]
yield chunk
return chat_stream_response(request, inner())
else:
comp = ChatCompletionObject(id=id,object='chat.completion',created=int(time()))
comp.usage = Usage(completion_tokens=1, prompt_tokens=1, total_tokens=2)
async for token in interface.inference(input_message,id,create.temperature,create.top_p):
comp.append_token(token)
return comp
from openai.types.chat.chat_completion import Choice
from openai.types.chat.chat_completion_message import ChatCompletionMessage
content = ""
finish_reason = None
async for res in interface.inference(input_message,id,create.temperature,create.top_p):
if isinstance(res, RawUsage):
raw_usage = res
usage = CompletionUsage(
prompt_tokens = raw_usage.prefill_count,
completion_tokens = raw_usage.decode_count,
total_tokens = raw_usage.prefill_count + raw_usage.decode_count
)
else:
token, finish_reason = res
content = content + token
finish_reason = finish_reason
choice = Choice(
index = 0,
finish_reason = finish_reason,
message = ChatCompletionMessage(
content=content,
role="assistant"
))
chat_completion = ChatCompletion(
id = id,
choices = [choice],
created = int(time()),
model = Config().model_name,
object = 'chat.completion',
usage = usage
)
return chat_completion

View file

@ -6,6 +6,7 @@ from fastapi.requests import Request
from ktransformers.server.utils.create_interface import get_interface
from ktransformers.server.schemas.assistants.streaming import stream_response
from ktransformers.server.schemas.legacy.completions import CompletionCreate,CompletionObject
from ktransformers.server.schemas.endpoints.chat import RawUsage
router = APIRouter()
@ -17,17 +18,24 @@ async def create_completion(request:Request,create:CompletionCreate):
print(f'COMPLETION INPUT:----\n{create.prompt}\n----')
if create.stream:
async def inner():
async for token in interface.inference(create.prompt,id,create.temperature,create.top_p):
d = {'choices':[{'delta':{'content':token}}]}
yield f"data:{json.dumps(d)}\n\n"
async for res in interface.inference(create.prompt,id,create.temperature,create.top_p):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
d = {'choices':[{'delta':{'content':token}}]}
yield f"data:{json.dumps(d)}\n\n"
d = {'choices':[{'delta':{'content':''},'finish_reason':''}]}
yield f"data:{json.dumps(d)}\n\n"
return stream_response(request,inner())
else:
comp = CompletionObject(id=id,object='text_completion',created=int(time()))
async for token in interface.inference(create.prompt,id,create.temperature,create.top_p):
comp.append_token(token)
async for res in interface.inference(create.prompt,id,create.temperature,create.top_p):
if isinstance(res, RawUsage):
raw_usage = res
else:
token, finish_reason = res
comp.append_token(token)
return comp