Merge pull request #1337 from liu-shaojun/docker_xpu
Some checks failed
Book-CI / test (push) Has been cancelled
Deploy / deploy (macos-latest) (push) Has been cancelled
Deploy / deploy (ubuntu-latest) (push) Has been cancelled
Deploy / deploy (windows-latest) (push) Has been cancelled

Add Dockerfile and usage guide for XPU support
This commit is contained in:
aubreyli 2025-05-28 14:08:46 +08:00 committed by GitHub
commit ce75fcd7dd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 165 additions and 0 deletions

68
Dockerfile.xpu Normal file
View file

@ -0,0 +1,68 @@
# Base image
FROM intel/oneapi-basekit:2025.0.1-0-devel-ubuntu22.04
ARG http_proxy
ARG https_proxy
ENV DEBIAN_FRONTEND=noninteractive
ENV CONDA_DIR=/opt/conda
# Install dependencies
RUN apt-get update && apt-get install -y \
wget \
curl \
bash \
git \
vim \
ca-certificates \
binutils \
cmake \
g++ \
&& rm -rf /var/lib/apt/lists/*
# Install Miniforge
RUN wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh -O /tmp/miniforge.sh && \
bash /tmp/miniforge.sh -b -p $CONDA_DIR && \
rm /tmp/miniforge.sh && \
$CONDA_DIR/bin/conda clean -afy
# Add conda to PATH
ENV PATH=$CONDA_DIR/bin:$PATH
RUN bash -c "\
source /opt/conda/etc/profile.d/conda.sh && \
conda create --name ktransformers python=3.11 -y && \
conda activate ktransformers && \
conda env list && \
conda install -c conda-forge libstdcxx-ng -y && \
strings \$(find /opt/conda/envs/ktransformers/lib -name 'libstdc++.so.6') | grep GLIBCXX | grep 3.4.32 \
"
RUN bash -c "\
source /opt/conda/etc/profile.d/conda.sh && \
conda activate ktransformers && \
pip install ipex-llm[xpu_2.6]==2.3.0b20250518 --extra-index-url https://download.pytorch.org/whl/xpu && \
pip uninstall -y torch torchvision torchaudio && \
pip install torch==2.7+xpu torchvision torchaudio --index-url https://download.pytorch.org/whl/test/xpu && \
pip uninstall -y intel-opencl-rt dpcpp-cpp-rt && \
pip list \
"
# Clone and set up ktransformers repo
RUN bash -c "\
source $CONDA_DIR/etc/profile.d/conda.sh && \
conda activate ktransformers && \
git clone https://github.com/kvcache-ai/ktransformers.git && \
cd ktransformers && \
git submodule update --init && \
sed -i 's/torch\.xpu\.is_available()/True/g' setup.py && \
bash install.sh --dev xpu \
"
# Init conda and prepare bashrc
RUN conda init bash && \
echo "source $CONDA_DIR/etc/profile.d/conda.sh" >> ~/.bashrc && \
echo "conda activate ktransformers" >> ~/.bashrc
WORKDIR /ktransformers/
CMD ["bash"]

94
doc/en/Docker_xpu.md Normal file
View file

@ -0,0 +1,94 @@
# Intel GPU Docker Guide (Beta)
## Prerequisites
* Docker must be installed and running on your system.
* Create a folder to store big models & intermediate files (e.g., /mnt/models)
* **Before proceeding, ensure the Intel GPU driver is installed correctly on your host:** [Installation Guide](./xpu.md#1-install-intel-gpu-driver)
---
## Building the Docker Image Locally
1. Clone the repository and navigate to the project directory:
```bash
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
```
2. Build the Docker image using the XPU-specific [Dockerfile.xpu](../../Dockerfile.xpu):
```bash
sudo http_proxy=$HTTP_PROXY \
https_proxy=$HTTPS_PROXY \
docker build \
--build-arg http_proxy=$HTTP_PROXY \
--build-arg https_proxy=$HTTPS_PROXY \
-t kt_xpu:0.3.1 \
-f Dockerfile.xpu \
.
```
---
## Running the Container
### 1. Start the container
```bash
sudo docker run -td --privileged \
--net=host \
--device=/dev/dri \
--shm-size="16g" \
-v /path/to/models:/models \
-e http_proxy=$HTTP_PROXY \
-e https_proxy=$HTTPS_PROXY \
--name ktransformers_xpu \
kt_xpu:0.3.1
```
**Note**: Replace `/path/to/models` with your actual model directory path (e.g., `/mnt/models`).
---
### 2. Access the container
```bash
sudo docker exec -it ktransformers_xpu /bin/bash
```
---
### 3. Set required XPU environment variables (inside the container)
```bash
export SYCL_CACHE_PERSISTENT=1
export ONEAPI_DEVICE_SELECTOR=level_zero:0
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
---
### 4. Run the sample script
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path ktransformers/optimize/optimize_rules/xpu/DeepSeek-V3-Chat.yaml \
--cpu_infer <cpu_cores + 1> \
--device xpu \
--max_new_tokens 200
```
**Note**:
* Replace `<path_to_gguf_files>` with the path to your GGUF model files.
* Replace `<cpu_cores + 1>` with the number of CPU cores you want to use plus one.
---
## Additional Information
For more configuration options and usage details, refer to the [project README](../../README.md). To run KTransformers natively on XPU (outside of Docker), please refer to [xpu.md](./xpu.md).

View file

@ -129,3 +129,6 @@ Ensure you have permissions to access /dev/dri/renderD*. This typically requires
sudo gpasswd -a ${USER} render
newgrp render
```
## Additional Information
To run KTransformers on XPU with Docker, please refer to [Docker_xpu.md](./Docker_xpu.md).