diff --git a/ktransformers/server/api/openai/legacy/completions.py b/ktransformers/server/api/openai/legacy/completions.py index fe250f4..9808c3a 100644 --- a/ktransformers/server/api/openai/legacy/completions.py +++ b/ktransformers/server/api/openai/legacy/completions.py @@ -20,7 +20,7 @@ async def create_completion(request:Request,create:CompletionCreate): if create.stream: async def inner(): - async for token in interface.inference(create.prompt,id,create.temperature,create.top_p): + async for token in interface.inference(create.prompt,id,create.temperature,create.top_p,create.repetition_penalty): d = {'choices':[{'delta':{'content':token}}]} yield f"data:{json.dumps(d)}\n\n" d = {'choices':[{'delta':{'content':''},'finish_reason':''}]} @@ -28,6 +28,6 @@ async def create_completion(request:Request,create:CompletionCreate): return stream_response(request,inner()) else: comp = CompletionObject(id=id,object='text_completion',created=int(time())) - async for token in interface.inference(create.prompt,id,create.temperature,create.top_p): + async for token in interface.inference(create.prompt,id,create.temperature,create.top_p,create.repetition_penalty): comp.append_token(token) return comp diff --git a/ktransformers/server/backend/interfaces/transformers.py b/ktransformers/server/backend/interfaces/transformers.py index d2e48a4..2674dd1 100644 --- a/ktransformers/server/backend/interfaces/transformers.py +++ b/ktransformers/server/backend/interfaces/transformers.py @@ -202,18 +202,20 @@ class TransformersInterface(BackendInterfaceBase): self.seq_length += 1 return self.streamer.put(new_tokens) - def prepare_logits_wrapper(self, inputs, device, temperature: Optional[float] = None, top_p: Optional[float] = None): + def prepare_logits_wrapper(self, inputs, device, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None): if temperature is None: temperature = self.args.temperature if top_p is None: top_p = self.args.top_p + if repetition_penalty is None: + repetition_penalty = self.args.repetition_penalty generation_config, model_kwargs = self.model._prepare_generation_config( None, max_length=self.args.max_new_tokens, do_sample=True, top_k=self.args.top_k, top_p=top_p, temperature=temperature, - repetition_penalty=self.args.repetition_penalty # change this to modify generate config + repetition_penalty=repetition_penalty # change this to modify generate config ) self.inputs = inputs self.generation_config = generation_config @@ -259,7 +261,7 @@ class TransformersInterface(BackendInterfaceBase): return self.logits_to_token(logits) @torch.no_grad - def prefill(self, input_ids: torch.Tensor, is_new: bool, temperature: Optional[float] = None, top_p: Optional[float] = None): + def prefill(self, input_ids: torch.Tensor, is_new: bool, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None): input_ids_length = input_ids.shape[-1] logger.debug(f"input_ids: {input_ids.shape}") @@ -327,7 +329,7 @@ class TransformersInterface(BackendInterfaceBase): else: logits = self.model(inputs_embeds=inputs_embeds, return_dict=False)[0] - self.prepare_logits_wrapper(input_ids, device, temperature, top_p) + self.prepare_logits_wrapper(input_ids, device, temperature, top_p, repetition_penalty) next_token = self.logits_to_token(logits[0, -1, :]) yield self.append_new_tokens(next_token) @@ -363,7 +365,7 @@ class TransformersInterface(BackendInterfaceBase): self.last_request_id = thread_id return True - async def inference(self, local_messages, thread_id: str, temperature: Optional[float] = None, top_p: Optional[float] = None): + async def inference(self, local_messages, thread_id: str, temperature: Optional[float] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None): self.streamer.reset() self.profiler.create_and_start_timer("tokenize") if isinstance(local_messages, List): @@ -390,7 +392,7 @@ class TransformersInterface(BackendInterfaceBase): print(think, end="",flush=True) yield think - for t in self.prefill(input_ids, self.check_is_new(thread_id), temperature, top_p): + for t in self.prefill(input_ids, self.check_is_new(thread_id), temperature, top_p, repetition_penalty): # output think token after prefill done if t is not None: print(t, end="",flush=True) diff --git a/ktransformers/server/schemas/legacy/completions.py b/ktransformers/server/schemas/legacy/completions.py index 7be0404..c5876d4 100644 --- a/ktransformers/server/schemas/legacy/completions.py +++ b/ktransformers/server/schemas/legacy/completions.py @@ -11,6 +11,7 @@ class CompletionCreate(BaseModel): stream: bool = False temperature: Optional[float] top_p: Optional[float] + repetition_penalty: Optional[float] def get_tokenizer_messages(self): if isinstance(self.prompt,List):