mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-09 13:55:27 +00:00
feat: add prefix cache for server
This commit is contained in:
parent
c515cc49a5
commit
bb0ccc7b1a
5 changed files with 132 additions and 55 deletions
|
@ -121,33 +121,53 @@ class KTransformersInterface(TransformersInterface):
|
|||
@torch.no_grad
|
||||
def prefill(self, input_ids: torch.Tensor, is_new: bool):
|
||||
input_ids_length = input_ids.shape[-1]
|
||||
self.profiler.set_counter("prefill", input_ids_length)
|
||||
logger.debug(f"input_ids: {input_ids.shape}")
|
||||
|
||||
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
|
||||
|
||||
if is_new:
|
||||
self.cache.reset()
|
||||
self.ever_generated_ids.clear()
|
||||
former_seq_length = 0
|
||||
self.seq_length = input_ids_length
|
||||
self.generated_ids = torch.zeros(
|
||||
self.args.batch_size,
|
||||
self.seq_length + self.args.max_new_tokens + 1,
|
||||
dtype=torch.int,
|
||||
device=self.args.device,
|
||||
)
|
||||
else:
|
||||
logger.debug(f"generate_ids: {self.generated_ids.shape}")
|
||||
former_seq_length = self.seq_length
|
||||
self.seq_length += input_ids_length
|
||||
expected_length = self.seq_length + self.args.max_new_tokens + 1
|
||||
delta_length = expected_length - self.generated_ids.shape[-1]
|
||||
if delta_length > 0:
|
||||
new_generate_ids = torch.zeros(
|
||||
self.args.batch_size, delta_length, dtype=torch.int, device=self.args.device
|
||||
same_prefix = 0
|
||||
flat_input_ids = input_ids.flatten()
|
||||
|
||||
if getattr(self, 'generated_ids', None) is None:
|
||||
self.generated_ids = torch.zeros(
|
||||
self.args.batch_size,
|
||||
input_ids.shape[-1] + self.args.max_new_tokens + 1,
|
||||
dtype=torch.int,
|
||||
device=self.args.device,
|
||||
)
|
||||
self.generated_ids = torch.cat([self.generated_ids, new_generate_ids], dim=-1)
|
||||
self.seq_length = 1
|
||||
|
||||
flat_prev_ids = self.generated_ids.flatten()
|
||||
for i in range(min(self.seq_length, flat_input_ids.shape[0]) - 1):
|
||||
if flat_input_ids[i] == flat_prev_ids[i]:
|
||||
same_prefix += 1
|
||||
else:
|
||||
break
|
||||
|
||||
logger.debug(f"same prefix len: {same_prefix}")
|
||||
self.cache.remove_suffix(same_prefix)
|
||||
self.seq_length = same_prefix
|
||||
self.generated_ids = self.generated_ids[..., :same_prefix]
|
||||
input_ids = input_ids[..., same_prefix:]
|
||||
input_ids_length = input_ids.shape[-1]
|
||||
|
||||
self.ever_generated_ids.clear()
|
||||
self.profiler.set_counter("prefill", input_ids_length)
|
||||
logger.debug(f"input_ids: {input_ids.shape}")
|
||||
|
||||
logger.debug(f"generate_ids: {self.generated_ids.shape}")
|
||||
former_seq_length = self.seq_length
|
||||
self.seq_length += input_ids_length
|
||||
expected_length = self.seq_length + self.args.max_new_tokens + 1
|
||||
delta_length = expected_length - self.generated_ids.shape[-1]
|
||||
if delta_length > 0:
|
||||
new_generate_ids = torch.zeros(
|
||||
self.args.batch_size, delta_length, dtype=torch.int, device=self.args.device
|
||||
)
|
||||
self.generated_ids = torch.cat([self.generated_ids, new_generate_ids], dim=-1)
|
||||
|
||||
logger.debug(f"cache position: {former_seq_length} to {self.seq_length}")
|
||||
cache_position = torch.arange(former_seq_length, self.seq_length, device=device)
|
||||
self.generated_ids[:, cache_position] = input_ids.to(self.args.device).to(torch.int)
|
||||
|
@ -168,6 +188,7 @@ class KTransformersInterface(TransformersInterface):
|
|||
else:
|
||||
logits = self.model(inputs_embeds=inputs_embeds, return_dict=False)[0]
|
||||
|
||||
self.prepare_logits_wrapper(input_ids, device)
|
||||
next_token = self.logits_to_token(logits[0, -1, :])
|
||||
yield self.append_new_tokens(next_token)
|
||||
|
||||
|
@ -179,4 +200,4 @@ class KTransformersInterface(TransformersInterface):
|
|||
async def inference(self, local_messages, thread_id: str):
|
||||
async with self._infer_lock:
|
||||
async for v in super().inference(local_messages, thread_id):
|
||||
yield v
|
||||
yield v
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue