mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-10 15:29:39 +00:00
support smt and glm4
This commit is contained in:
parent
1677e90092
commit
b66d96db97
18 changed files with 3519 additions and 16 deletions
90
ktransformers/optimize/optimize_rules/Glm4Moe-serve.yaml
Normal file
90
ktransformers/optimize/optimize_rules/Glm4Moe-serve.yaml
Normal file
|
@ -0,0 +1,90 @@
|
|||
- match:
|
||||
class: ktransformers.models.modeling_glm4_moe.Glm4MoeRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.KGlm4MoeRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^lm_head$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "VLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# - match:
|
||||
# name: "^model\\.layers\\..*$" # regular expression
|
||||
# class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
# replace:
|
||||
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
# kwargs:
|
||||
# generate_device: "cuda"
|
||||
# prefill_device: "cuda"
|
||||
# generate_op: "VLinearMarlin"
|
||||
# prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_glm4_moe.Glm4MoeMoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KGlm4MoeMoE
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_op: None
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.balance_serve_attention.KSmallthinkerAttention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
|
||||
- match:
|
||||
class: ktransformers.models.modeling_glm4_moe.Glm4MoeRMSNorm
|
||||
replace:
|
||||
class: ktransformers.operators.layernorm.KGlm4MoeRMSNorm
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
class: ktransformers.models.modeling_glm4_moe.Glm4MoeMLP
|
||||
replace:
|
||||
class: ktransformers.operators.mlp.KGlm4MoeMLP
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
|
@ -0,0 +1,90 @@
|
|||
- match:
|
||||
class: ktransformers.models.modeling_smallthinker.SmallthinkerRotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.KSmallthinkerRotaryEmbedding
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^lm_head$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "VLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# - match:
|
||||
# name: "^model\\.layers\\..*$" # regular expression
|
||||
# class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
# replace:
|
||||
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
# kwargs:
|
||||
# generate_device: "cuda"
|
||||
# prefill_device: "cuda"
|
||||
# generate_op: "VLinearMarlin"
|
||||
# prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*feed_forward\\.shared_expert_gate).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.block_sparse_moe$"
|
||||
class: ktransformers.models.modeling_smallthinker.SmallthinkerMoeBlock
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KSmallthinkerMoeBlock
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.block_sparse_moe\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_op: None
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.balance_serve_attention.KSmallthinkerAttention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
|
||||
- match:
|
||||
class: ktransformers.models.modeling_smallthinker.SmallthinkerRMSNorm
|
||||
replace:
|
||||
class: ktransformers.operators.layernorm.KSmallthinkerRMSNorm
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
||||
- match:
|
||||
class: ktransformers.models.modeling_smallthinker.SmallthinkerDenseMlpBlock
|
||||
replace:
|
||||
class: ktransformers.operators.mlp.KSmallthinkerDenseMlpBlock
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
Loading…
Add table
Add a link
Reference in a new issue