mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-09 13:55:27 +00:00
use compile for gate, slight performance improvement
This commit is contained in:
parent
6c4ed59175
commit
a889288fc1
9 changed files with 155 additions and 37 deletions
|
@ -1,25 +1,14 @@
|
|||
|
||||
from typing import Any, Union
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
from torch import Tensor, nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Optional
|
||||
from torch import nn
|
||||
import torch
|
||||
import sys, os
|
||||
import torch.nn.functional as F
|
||||
import os
|
||||
from ktransformers.operators.base_operator import BaseInjectedModule
|
||||
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build"))
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build", "Release"))
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build", "Debug"))
|
||||
import cpuinfer_ext
|
||||
from cpuinfer_ext.moe import MOEConfig, MOE
|
||||
import ctypes
|
||||
from ktransformers.operators.base_operator import BaseInjectedModule
|
||||
from ktransformers.operators.linear import KTransformersLinear
|
||||
from ktransformers.util.custom_gguf import GGUFLoader
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from abc import ABC, abstractmethod
|
||||
import time
|
||||
|
||||
|
||||
# class Base(BaseInjectedModule, ABC):
|
||||
|
@ -100,8 +89,8 @@ class KMoEGate(BaseInjectedModule, KMoEGateBase):
|
|||
gguf_loader: GGUFLoader,
|
||||
config: PretrainedConfig,
|
||||
orig_module: nn.Module = None,
|
||||
prefill_device: str = "cuda",
|
||||
generate_device: str = "cuda",
|
||||
prefill_device: str = "cuda",
|
||||
**kwargs,
|
||||
):
|
||||
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs)
|
||||
|
@ -131,3 +120,133 @@ class KMoEGate(BaseInjectedModule, KMoEGateBase):
|
|||
self.weight = None
|
||||
if self.e_score_correction_bias is not None:
|
||||
self.e_score_correction_bias = None
|
||||
|
||||
|
||||
|
||||
# adapted from https://github.com/vllm-project/vllm/blob/c77620d22d43daa7e0440e6267cbdd83f849ac64/vllm/model_executor/layers/fused_moe/fused_moe.py#L1071
|
||||
# This is used by the Deepseek-V2 and Deepseek-V3 model
|
||||
#@torch.compile(dynamic=True)
|
||||
def grouped_topk(hidden_states: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
num_expert_group: int = 0,
|
||||
topk_group: int = 0,
|
||||
scoring_func: str = "sigmoid",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None):
|
||||
|
||||
assert hidden_states.shape[0] == gating_output.shape[0], (
|
||||
"Number of tokens mismatch")
|
||||
|
||||
if scoring_func == "softmax":
|
||||
scores = torch.softmax(gating_output, dim=-1)
|
||||
elif scoring_func == "sigmoid":
|
||||
scores = gating_output.sigmoid()
|
||||
else:
|
||||
raise ValueError(f"Unsupported scoring function: {scoring_func}")
|
||||
|
||||
num_token = scores.shape[0]
|
||||
if e_score_correction_bias is not None:
|
||||
# Store original scores before applying correction bias. We use biased
|
||||
# scores for expert selection but original scores for routing weights
|
||||
original_scores = scores
|
||||
scores = scores + e_score_correction_bias.unsqueeze(0)
|
||||
group_scores = (scores.view(num_token, num_expert_group,
|
||||
-1).topk(2, dim=-1)[0].sum(dim=-1))
|
||||
else:
|
||||
group_scores = scores.view(num_token, num_expert_group,
|
||||
-1).max(dim=-1).values # [n, n_group]
|
||||
group_idx = torch.topk(group_scores, k=topk_group, dim=-1,
|
||||
sorted=False)[1] # [n, top_k_group]
|
||||
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
||||
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
||||
score_mask = group_mask.unsqueeze(-1).expand(
|
||||
num_token, num_expert_group,
|
||||
scores.shape[-1] // num_expert_group).reshape(num_token, -1) # [n, e]
|
||||
tmp_scores = scores.masked_fill(~score_mask.bool(),
|
||||
float("-inf")) # [n, e]
|
||||
|
||||
if e_score_correction_bias is not None:
|
||||
topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)[1]
|
||||
# Use original unbiased scores for the routing weights
|
||||
topk_weights = original_scores.gather(1, topk_ids)
|
||||
else:
|
||||
topk_weights, topk_ids = torch.topk(tmp_scores,
|
||||
k=topk,
|
||||
dim=-1,
|
||||
sorted=False)
|
||||
|
||||
if renormalize:
|
||||
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
|
||||
|
||||
return topk_ids.to(torch.long), topk_weights.to(torch.float32)
|
||||
|
||||
class KMoEGateDeepSeekV3(BaseInjectedModule, KMoEGateBase):
|
||||
def __init__(
|
||||
self,
|
||||
key: str,
|
||||
gguf_loader: GGUFLoader,
|
||||
config: PretrainedConfig,
|
||||
orig_module: nn.Module = None,
|
||||
generate_device: str = "cuda",
|
||||
generate_op: str| None = "KLinearMarlin",
|
||||
prefill_device: str = "cuda",
|
||||
prefill_op: str| None = "KLinearMarlin",
|
||||
use_quant: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs)
|
||||
KMoEGateBase.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
|
||||
self.generate_device = generate_device
|
||||
self.prefill_device = prefill_device
|
||||
self.generate_op = generate_op
|
||||
self.prefill_op = prefill_op
|
||||
self.is_windows = os.name == 'nt'
|
||||
self.use_quant = use_quant
|
||||
if not self.is_windows and use_quant:
|
||||
self.gate_linear = nn.Linear(self.gating_dim, self.n_routed_experts, device=generate_device)
|
||||
self.gate_linear = KTransformersLinear(key + ".ffn_gate_inp",
|
||||
gguf_loader, config, self.gate_linear, #orig_module
|
||||
generate_device, generate_op, prefill_device, prefill_op)
|
||||
else:
|
||||
self.gate_linear = None
|
||||
|
||||
def forward(self, hidden_states) -> torch.Tensor:
|
||||
if self.is_windows:
|
||||
return self.orig_module.forward(hidden_states)
|
||||
|
||||
bsz, seq_len, h = hidden_states.shape
|
||||
### compute gating score
|
||||
hidden_states = hidden_states.view(-1, h)
|
||||
if self.use_quant:
|
||||
logits = self.gate_linear.forward(logits)
|
||||
else:
|
||||
logits = F.linear(
|
||||
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
|
||||
)
|
||||
|
||||
return grouped_topk(hidden_states, logits,
|
||||
self.top_k, self.norm_topk_prob,
|
||||
self.n_group, self.topk_group)
|
||||
|
||||
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str|None = None):
|
||||
if device is None: device = self.device
|
||||
if w is None: w = self.load_weights(device=device)
|
||||
|
||||
if isinstance(w, dict):
|
||||
self.weight_type = w["weight_type"]
|
||||
self.e_score_correction_bias_type = w["e_score_correction_bias_type"]
|
||||
self.orig_module.weight = nn.Parameter(w["weight"])
|
||||
self.orig_module.e_score_correction_bias = nn.Parameter(w["e_score_correction_bias"])
|
||||
else:
|
||||
raise ValueError("Invalid weight type")
|
||||
self.orig_module.weight = nn.Parameter(self.orig_module.weight.to(device))
|
||||
self.orig_module.e_score_correction_bias = nn.Parameter(self.orig_module.e_score_correction_bias.to(device))
|
||||
if not self.is_windows and self.use_quant:
|
||||
self.gate_linear.load(self.orig_module.weight)
|
||||
|
||||
def unload(self):
|
||||
if self.weight is not None:
|
||||
self.weight = None
|
||||
if self.e_score_correction_bias is not None:
|
||||
self.e_score_correction_bias = None
|
||||
|
|
|
@ -477,7 +477,6 @@ class KTransformersLinear(BaseInjectedModule, KLinearBase):
|
|||
gguf_loader: GGUFLoader,
|
||||
config: PretrainedConfig,
|
||||
orig_module: nn.Module,
|
||||
# device: str = "cuda",
|
||||
generate_device: str = "cuda",
|
||||
generate_op: str| None = "KLinearMarlin",
|
||||
prefill_device: str = "cuda",
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
|
|
@ -147,7 +147,7 @@
|
|||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
@ -157,7 +157,7 @@
|
|||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
@ -167,7 +167,7 @@
|
|||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
@ -177,7 +177,7 @@
|
|||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
|
|
@ -278,7 +278,7 @@
|
|||
name: "^model\\.layers\\.([0-7])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
@ -288,7 +288,7 @@
|
|||
name: "^model\\.layers\\.(8|9|1[0-5])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
@ -298,7 +298,7 @@
|
|||
name: "^model\\.layers\\.(1[6-9]|2[0-3])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
@ -308,7 +308,7 @@
|
|||
name: "^model\\.layers\\.(2[4-9]|3[0-1])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
@ -318,7 +318,7 @@
|
|||
name: "^model\\.layers\\.(3[2-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:4"
|
||||
prefill_device: "cuda:4"
|
||||
|
@ -328,7 +328,7 @@
|
|||
name: "^model\\.layers\\.(4[0-7])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:5"
|
||||
prefill_device: "cuda:5"
|
||||
|
@ -338,7 +338,7 @@
|
|||
name: "^model\\.layers\\.(4[8-9]|5[0-5])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:6"
|
||||
prefill_device: "cuda:6"
|
||||
|
@ -348,7 +348,7 @@
|
|||
name: "^model\\.layers\\.(5[6-9]|60)\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:7"
|
||||
prefill_device: "cuda:7"
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
class: ktransformers.operators.RoPE.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
@ -18,7 +18,7 @@
|
|||
name: "^model\\.layers\\.([3456][0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
class: ktransformers.operators.RoPE.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
class: ktransformers.operators.RoPE.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
|
|
@ -66,7 +66,7 @@
|
|||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
@ -74,7 +74,7 @@
|
|||
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3 # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
|
|
@ -38,7 +38,7 @@
|
|||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue