mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-15 01:29:42 +00:00
refactor folders
This commit is contained in:
parent
0e93a09d67
commit
8d0292aa44
52 changed files with 0 additions and 0 deletions
71
csrc/ktransformers_ext/cuda/binding.cpp
Normal file
71
csrc/ktransformers_ext/cuda/binding.cpp
Normal file
|
@ -0,0 +1,71 @@
|
|||
/**
|
||||
* @Description :
|
||||
* @Author : Azure-Tang, Boxin Zhang
|
||||
* @Date : 2024-07-25 13:38:30
|
||||
* @Version : 0.2.2
|
||||
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
|
||||
**/
|
||||
|
||||
#include "custom_gguf/ops.h"
|
||||
#ifdef KTRANSFORMERS_USE_CUDA
|
||||
#include "gptq_marlin/ops.h"
|
||||
#endif
|
||||
// Python bindings
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <torch/library.h>
|
||||
#include <torch/extension.h>
|
||||
#include <torch/torch.h>
|
||||
// namespace py = pybind11;
|
||||
|
||||
PYBIND11_MODULE(KTransformersOps, m) {
|
||||
|
||||
m.def("dequantize_q8_0", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, py::object target_dtype) {
|
||||
torch::Dtype dtype = torch::python::detail::py_object_to_dtype(target_dtype);
|
||||
return dequantize_q8_0((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, dtype);
|
||||
}, "Function to dequantize q8_0 data.",
|
||||
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
|
||||
|
||||
m.def("dequantize_q6_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, py::object target_dtype) {
|
||||
torch::Dtype dtype = torch::python::detail::py_object_to_dtype(target_dtype);
|
||||
return dequantize_q6_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, dtype);
|
||||
}, "Function to dequantize q6_k data.",
|
||||
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
|
||||
|
||||
m.def("dequantize_q5_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, py::object target_dtype) {
|
||||
torch::Dtype dtype = torch::python::detail::py_object_to_dtype(target_dtype);
|
||||
return dequantize_q5_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, dtype);
|
||||
}, "Function to dequantize q5_k data.",
|
||||
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
|
||||
|
||||
m.def("dequantize_q4_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, py::object target_dtype) {
|
||||
torch::Dtype dtype = torch::python::detail::py_object_to_dtype(target_dtype);
|
||||
return dequantize_q4_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, dtype);
|
||||
}, "Function to dequantize q4_k data.",
|
||||
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
|
||||
|
||||
m.def("dequantize_q3_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, py::object target_dtype) {
|
||||
torch::Dtype dtype = torch::python::detail::py_object_to_dtype(target_dtype);
|
||||
return dequantize_q3_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, dtype);
|
||||
}, "Function to dequantize q3_k data.",
|
||||
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
|
||||
|
||||
m.def("dequantize_q2_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, py::object target_dtype) {
|
||||
torch::Dtype dtype = torch::python::detail::py_object_to_dtype(target_dtype);
|
||||
return dequantize_q2_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, dtype);
|
||||
}, "Function to dequantize q2_k data.",
|
||||
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
|
||||
|
||||
m.def("dequantize_iq4_xs", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, py::object target_dtype) {
|
||||
torch::Dtype dtype = torch::python::detail::py_object_to_dtype(target_dtype);
|
||||
return dequantize_iq4_xs((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, dtype);
|
||||
}, "Function to dequantize iq4_xs data.",
|
||||
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
|
||||
|
||||
#ifdef KTRANSFORMERS_USE_CUDA
|
||||
m.def("gptq_marlin_gemm", &gptq_marlin_gemm, "Function to perform GEMM using Marlin quantization.",
|
||||
py::arg("a"), py::arg("b_q_weight"), py::arg("b_scales"), py::arg("g_idx"),
|
||||
py::arg("perm"), py::arg("workspace"), py::arg("num_bits"), py::arg("size_m"),
|
||||
py::arg("size_n"), py::arg("size_k"), py::arg("is_k_full"));
|
||||
#endif
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue