mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-10 15:29:39 +00:00
Modify the performance calculation module
Modify the performance data calculation module from estimation to retrieving from `raw_usage`.
This commit is contained in:
parent
6e4da83d4b
commit
8ce34b3b5c
1 changed files with 24 additions and 21 deletions
|
@ -115,6 +115,7 @@ class OllamaChatCompletionStreamResponse(BaseModel):
|
|||
created_at: str
|
||||
message: dict
|
||||
done: bool = Field(...)
|
||||
done_reason: Optional[str] = Field("", description="done_reason")
|
||||
total_duration: Optional[int] = Field(None, description="Total time spent in nanoseconds")
|
||||
load_duration: Optional[int] = Field(None, description="Time spent loading model in nanoseconds")
|
||||
prompt_eval_count: Optional[int] = Field(None, description="Number of tokens in prompt")
|
||||
|
@ -127,6 +128,7 @@ class OllamaChatCompletionResponse(BaseModel):
|
|||
created_at: str
|
||||
message: dict
|
||||
done: bool
|
||||
done_reason: Optional[str] = Field("", description="done_reason")
|
||||
total_duration: Optional[int] = Field(None, description="Total time spent in nanoseconds")
|
||||
load_duration: Optional[int] = Field(None, description="Time spent loading model in nanoseconds")
|
||||
prompt_eval_count: Optional[int] = Field(None, description="Number of tokens in prompt")
|
||||
|
@ -140,19 +142,14 @@ async def chat(request: Request, input: OllamaChatCompletionRequest):
|
|||
interface: BackendInterfaceBase = get_interface()
|
||||
config = Config()
|
||||
|
||||
# 将消息转换为提示字符串
|
||||
prompt = ""
|
||||
for msg in input.messages:
|
||||
prompt += f"{msg.role}: {msg.content}\n"
|
||||
prompt += "assistant:"
|
||||
input_message = [json.loads(m.model_dump_json()) for m in input.messages]
|
||||
|
||||
if input.stream:
|
||||
async def inner():
|
||||
start_time = time() # 记录开始时间(秒)
|
||||
eval_count = 0 # 统计生成的 token 数量
|
||||
tokens = []
|
||||
|
||||
async for res in interface.inference(prompt, id):
|
||||
async for res in interface.inference(input_message, id):
|
||||
if isinstance(res, RawUsage):
|
||||
raw_usage = res
|
||||
else:
|
||||
|
@ -166,11 +163,13 @@ async def chat(request: Request, input: OllamaChatCompletionRequest):
|
|||
yield d.model_dump_json() + '\n'
|
||||
# 计算性能数据
|
||||
end_time = time()
|
||||
total_duration = int((end_time - start_time) * 1_000_000_000) # 转换为纳秒
|
||||
prompt_eval_count = len(prompt.split()) # 简单估算提示词数量
|
||||
eval_duration = total_duration # 假设全部时间用于生成(简化)
|
||||
prompt_eval_duration = 0 # 假设无单独提示评估时间
|
||||
load_duration = 0 # 假设加载时间未知
|
||||
total_duration = int((end_time - start_time) * 1_000_000_000) # unit: ns
|
||||
prompt_eval_count = raw_usage.prefill_count
|
||||
eval_count = raw_usage.decode_count
|
||||
eval_duration = int(raw_usage.decode_time * 1_000_000_000)
|
||||
prompt_eval_duration = int(raw_usage.prefill_time * 1_000_000_000)
|
||||
load_duration = int(raw_usage.tokenize_time * 1_000_000_000)
|
||||
done_reason = finish_reason
|
||||
|
||||
d = OllamaChatCompletionStreamResponse(
|
||||
model=config.model_name,
|
||||
|
@ -182,7 +181,8 @@ async def chat(request: Request, input: OllamaChatCompletionRequest):
|
|||
prompt_eval_count=prompt_eval_count,
|
||||
prompt_eval_duration=prompt_eval_duration,
|
||||
eval_count=eval_count,
|
||||
eval_duration=eval_duration
|
||||
eval_duration=eval_duration,
|
||||
done_reason=done_reason
|
||||
)
|
||||
yield d.model_dump_json() + '\n'
|
||||
return check_link_response(request, inner())
|
||||
|
@ -191,20 +191,22 @@ async def chat(request: Request, input: OllamaChatCompletionRequest):
|
|||
complete_response = ""
|
||||
eval_count = 0
|
||||
|
||||
async for res in interface.inference(prompt, id):
|
||||
async for res in interface.inference(input_message, id):
|
||||
if isinstance(res, RawUsage):
|
||||
raw_usage = res
|
||||
else:
|
||||
token, finish_reason = res
|
||||
complete_response += token
|
||||
eval_count += 1
|
||||
|
||||
end_time = time()
|
||||
total_duration = int((end_time - start_time) * 1_000_000_000)
|
||||
prompt_eval_count = len(prompt.split())
|
||||
eval_duration = total_duration
|
||||
prompt_eval_duration = 0
|
||||
load_duration = 0
|
||||
total_duration = int((end_time - start_time) * 1_000_000_000) # unit: ns
|
||||
prompt_eval_count = raw_usage.prefill_count
|
||||
eval_count = raw_usage.decode_count
|
||||
eval_duration = int(raw_usage.decode_time * 1_000_000_000)
|
||||
prompt_eval_duration = int(raw_usage.prefill_time * 1_000_000_000)
|
||||
load_duration = int(raw_usage.tokenize_time * 1_000_000_000)
|
||||
done_reason = finish_reason
|
||||
|
||||
|
||||
response = OllamaChatCompletionResponse(
|
||||
model=config.model_name,
|
||||
|
@ -216,7 +218,8 @@ async def chat(request: Request, input: OllamaChatCompletionRequest):
|
|||
prompt_eval_count=prompt_eval_count,
|
||||
prompt_eval_duration=prompt_eval_duration,
|
||||
eval_count=eval_count,
|
||||
eval_duration=eval_duration
|
||||
eval_duration=eval_duration,
|
||||
done_reason=done_reason
|
||||
)
|
||||
return response
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue