更改token注入逻辑,减少token注入量,防止遗忘

Update chat.py

Update chat.py

Update chat.py
This commit is contained in:
Creeper-MZ 2025-04-16 14:55:30 -04:00
parent a7e8d7c1af
commit 88f688e2c8

View file

@ -72,7 +72,6 @@ def getTools(buffer):
extracted_tools = []
working_buffer = buffer
# Iterate over all function calls
while tool_call_begin_marker in working_buffer and tool_call_end_marker in working_buffer:
# Find a complete function call
@ -115,36 +114,56 @@ def getTools(buffer):
logger.info(f"Get Function: {function_name}")
else:
logger.warning(f"Unable to get functionfunction_name: {function_name}")
logger.warning(f"Unable to get function, function_name: {function_name}")
logger.info(f"Total {len(extracted_tools)} Functions")
return extracted_tools
def get_tool_instructions():
"""Return concise tool calling instructions in English"""
return """When you need real-time information or specialized operations, use function calls with this format:
<toolcallsbegin><toolcallbegin>function<toolsep>function_name
```json
{"param1": "value1", "param2": "value2"}
```<toolcallend><toolcallsend>
Only use functions when needed. Ensure proper JSON formatting with appropriate parameters."""
@router.post('/chat/completions', tags=['openai'])
async def chat_completion(request: Request, create: ChatCompletionCreate):
id = str(uuid4().hex)
# 1. Use system prompts to let models know how to use tools
# Process messages with tool functionality if needed
enhanced_messages = list(create.messages)
# If there is a tool and the first message is system, add instructions on how to use the tool in the system tip
if create.tools and len(create.tools) > 0 and (enhanced_messages[0].role == Role.system or enhanced_messages[0].role == Role.user):
tool_instructions = "你可以使用function_call函数调用功能目前你可以使用以下工具\n\n"
# Check if tools are present
has_tools = create.tools and len(create.tools) > 0
if has_tools:
# Find the most recent user message to append tool information
latest_user_msg_idx = -1
for i in range(len(enhanced_messages) - 1, -1, -1):
if enhanced_messages[i].role == Role.user:
latest_user_msg_idx = i
break
# Build the tool descriptions
tools_description = ""
for tool in create.tools:
tool_instructions += f" \"function\":{{\"name\" : {tool.function.name},\"description\" : {tool.function.description} , \"parameters\" : {tool.function.parameters}}}\n"
tools_description += f"Function: {tool.function.name}\nDescription: {tool.function.description}\nParameters: {tool.function.parameters}\n\n"
# Modify tool usage guidelines to encourage JSON output
tool_instructions += "name为函数名称description为函数功能的描述parameters中含有函数需要使用的参数和参数的描述, 其中required为必要参数\n"
tool_instructions += "工具仅在用户明确提出,或者你认为需要调用工具的时候调用,注意,当需要高度实时性的信息比如时间或者最近的事情等,优先调用工具来获取!。当确实调用工具的关键信息时,你可以先向用户索取关键信息再调用工具\n"
tool_instructions += "\n当你需要使用工具时,请以下列格式输出,格式为:\n"
tool_instructions += '<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>name\n```json {"参数名": "参数值","参数名2": "参数值2"...}\n```<tool▁call▁end><tool▁calls▁end>\n'
tool_instructions += '示例: \n<tool▁calls▁begin><tool▁call▁begin>function<tool▁sep>the_functnion_name_will_be_called\n```json {"arg1": "value1","arg2": "value2"}\n```<tool▁call▁end><tool▁calls▁end>\n'
tool_instructions += "这样可以调用名为\"the_functnion_name_will_be_called\",并将value1和value2传入参数arg1,arg2\n"
tool_instructions += "不要尝试解释你在做什么,直接输出工具函数调用即可。确保函数调用语句格式正确且完整。"
# If first message is system, add concise tool instructions
if enhanced_messages[0].role == Role.system:
if "function calls" not in enhanced_messages[0].content.lower():
enhanced_messages[0].content += "\n\n" + get_tool_instructions()
enhanced_messages[0].content = enhanced_messages[0].content + "\n\n" + tool_instructions
# For the latest user message, append tool information
if latest_user_msg_idx >= 0:
# Add tool descriptions to the latest user message
enhanced_messages[latest_user_msg_idx].content += f"\n\nAvailable tools:\n{tools_description}"
# Requests processed
# Process request
interface: BackendInterfaceBase = get_interface()
input_message = [json.loads(m.model_dump_json()) for m in enhanced_messages]
@ -162,19 +181,20 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
system_fingerprint=f"fp_{uuid4().hex[:12]}",
)
# Collect the full output of the model, but specialize in processing tool calls
# Collect the full output of the model
full_content = ""
buffer = "" # Used to temporarily store the current block of text
tool_call_mode = False # Mark if a tool call is being processed
tool_calls = [] # Store all detected tool calls
# Customize model special tokens
# Tool call markers
tool_calls_begin_marker = "<tool▁calls▁begin>"
tool_call_begin_marker = "<tool▁call▁begin>"
tool_sep_marker = "<tool▁sep>"
tool_call_end_marker = "<tool▁call▁end>"
tool_calls_end_marker = "<tool▁calls▁end>"
# Use check_client_connected for early stopping
async for res in interface.inference(input_message, id, create.temperature, create.top_p):
if isinstance(res, RawUsage):
# Final return on utilization
@ -225,8 +245,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
# If the tool call end marker is found
if tool_calls_end_marker in buffer:
try:
# Parsing Calling Text Extraction Tool Calling Information
# Parse and extract tool calling information
tool_calls = getTools(buffer)
if len(tool_calls):
# reset state
@ -370,48 +389,12 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
# If the tool call end marker is found
if tool_calls_end_marker in buffer:
try:
# Parsing Calling Text Extraction Tool Calling Information
full_tool_call = buffer
# Extract function name
function_name_start = full_tool_call.find(tool_sep_marker) + len(tool_sep_marker)
function_name_end = full_tool_call.find("\n", function_name_start)
function_name = full_tool_call[function_name_start:function_name_end].strip()
# Extract JSON Parameters - Extracts the content between ```json and ```.
json_pattern = r'```json\s*(.*?)\s*```'
json_match = re.search(json_pattern, full_tool_call, re.DOTALL)
if json_match:
arguments_str = json_match.group(1).strip()
# Generate tool call IDs
tool_call_id = f"call_{uuid4().hex[:24]}"
# Add to tool call list
tool_calls.append({
"id": tool_call_id,
"index": 0,
"type": "function",
"function": {
"name": function_name,
"arguments": arguments_str
}
})
# If the tool call is successfully parsed, set the reason for completion
# Extract tool calls
tool_calls = getTools(buffer)
if tool_calls:
finish_reason = "tool_calls"
# reset state
tool_call_mode = False
buffer = ""
else:
# JSON extraction failed, probably incomplete formatting
logger.warning("Failed to extract JSON from tool call")
tool_call_mode = False
buffer = ""
except Exception as e:
logger.error(f"Error processing tool call: {e}")
# Reset state
tool_call_mode = False
buffer = ""
@ -430,7 +413,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
},
"finish_reason": finish_reason or "stop"
}],
"usage": usage.__dict__,
"usage": usage.__dict__ if 'usage' in locals() else None,
"system_fingerprint": f"fp_{uuid4().hex[:12]}"
}